湖北省隨州市廣水市廣才中學2022年中考數(shù)學模擬預測試卷含解析_第1頁
湖北省隨州市廣水市廣才中學2022年中考數(shù)學模擬預測試卷含解析_第2頁
湖北省隨州市廣水市廣才中學2022年中考數(shù)學模擬預測試卷含解析_第3頁
湖北省隨州市廣水市廣才中學2022年中考數(shù)學模擬預測試卷含解析_第4頁
湖北省隨州市廣水市廣才中學2022年中考數(shù)學模擬預測試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省隨州市廣水市廣才中學2022年中考數(shù)學模擬預測試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.2.如圖,點P是以O為圓心,AB為直徑的半圓上的動點,AB=2,設弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是A.B.C.D.3.如圖,拋物線y=ax2+bx+c(a≠0)過點(1,0)和點(0,﹣2),且頂點在第三象限,設P=a﹣b+c,則P的取值范圍是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<04.某幾何體由若干個大小相同的小正方體搭成,其主視圖與左視圖如圖所示,則搭成這個幾何體的小正方體最少有()A.4個 B.5個 C.6個 D.7個5.(2016四川省甘孜州)如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都為1,若將△AOB繞點O順時針旋轉(zhuǎn)90°得到△A′OB′,則A點運動的路徑的長為()A.π B.2π C.4π D.8π6.如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或57.如圖,⊙O的直徑AB與弦CD的延長線交于點E,若DE=OB,∠AOC=84°,則∠E等于()A.42° B.28° C.21° D.20°8.如圖1,點O為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處,柱柱同學操控機器人以每秒1個單位長度的速度在圖1中給出線段路徑上運行,柱柱同學將機器人運行時間設為t秒,機器人到點A的距離設為y,得到函數(shù)圖象如圖2,通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當t=3時,機器人一定位于點O;③機器人一定經(jīng)過點D;④機器人一定經(jīng)過點E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④9.的倒數(shù)是()A. B.-3 C.3 D.10.如圖,是的外接圓,已知,則的大小為A. B. C. D.11.的相反數(shù)是()A. B.2 C. D.12.如圖所示,點E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線交于點,,與軸負半軸,軸正半軸分別交于點,,,的延長線相交于點,則的值是_________.14.在今年的春節(jié)黃金周中,全國零售和餐飲企業(yè)實現(xiàn)銷售額約9260億元,比去年春節(jié)黃金周增長10.2%,將9260億用科學記數(shù)法表示為_____________.15.如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.16.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.17.關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是▲.18.已知一組數(shù)據(jù):3,3,4,5,5,則它的方差為____________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.20.(6分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.21.(6分)如圖,在中,,以邊為直徑作⊙交邊于點,過點作于點,、的延長線交于點.求證:是⊙的切線;若,且,求⊙的半徑與線段的長.22.(8分)如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:圖中△APD與哪個三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關系?并說明理由.23.(8分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)之后的△AB′C′;求線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.24.(10分)學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調(diào)查,把調(diào)查結果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據(jù)統(tǒng)計圖解答下列問題:本次調(diào)查中,王老師一共調(diào)查了名學生;將條形統(tǒng)計圖補充完整;為了共同進步,王老師從被調(diào)查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.25.(10分)解不等式組并寫出它的所有整數(shù)解.26.(12分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:兩次取出的小球標號相同;兩次取出的小球標號的和等于4.27.(12分)某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:本次接受調(diào)查的跳水運動員人數(shù)為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:由圖可知可以瞄準的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.2、A?!窘馕觥咳鐖D,∵根據(jù)三角形面積公式,當一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據(jù)勾股定理,得弦AP=x=。∴當x=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應在y=的一半上方,從而可排除C選項。故選A。3、A【解析】

解:∵二次函數(shù)的圖象開口向上,∴a>1.∵對稱軸在y軸的左邊,∴<1.∴b>1.∵圖象與y軸的交點坐標是(1,﹣2),過(1,1)點,代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故選A.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關系,利用數(shù)形結合思想解題是本題的解題關鍵.4、B【解析】

由主視圖和左視圖確定俯視圖的形狀,再判斷最少的正方體的個數(shù).【詳解】由主視圖和左視圖可確定所需正方體個數(shù)最少時俯視圖(數(shù)字為該位置小正方體的個數(shù))為:則搭成這個幾何體的小正方體最少有5個,故選B.【點睛】本題考查了由三視圖判斷幾何體,根據(jù)主視圖和左視圖畫出所需正方體個數(shù)最少的俯視圖是關鍵.【詳解】請在此輸入詳解!【點睛】請在此輸入點睛!5、B【解析】試題分析:∵每個小正方形的邊長都為1,∴OA=4,∵將△AOB繞點O順時針旋轉(zhuǎn)90°得到△A′OB′,∴∠AOA′=90°,∴A點運動的路徑的長為:=2π.故選B.考點:弧長的計算;旋轉(zhuǎn)的性質(zhì).6、A【解析】

連接B′D,過點B′作B′M⊥AD于M.設DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質(zhì)和折疊的性質(zhì)得到:(7-x)2=25-x2,通過解方程求得x的值,易得點B′到BC的距離.【詳解】解:如圖,連接B′D,過點B′作B′M⊥AD于M,∵點B的對應點B′落在∠ADC的角平分線上,∴設DM=B′M=x,則AM=7﹣x,又由折疊的性質(zhì)知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點B′到BC的距離為2或1.故選A.【點睛】本題考查的是翻折變換的性質(zhì),掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.7、B【解析】

利用OB=DE,OB=OD得到DO=DE,則∠E=∠DOE,根據(jù)三角形外角性質(zhì)得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC進行計算即可.【詳解】解:連結OD,如圖,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,

∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故選:B.【點睛】本題考查了圓的認識:掌握與圓有關的概念(

弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).也考查了等腰三角形的性質(zhì).8、C【解析】

根據(jù)圖象起始位置猜想點B或F為起點,則可以判斷①正確,④錯誤.結合圖象判斷3≤t≤4圖象的對稱性可以判斷②正確.結合圖象易得③正確.【詳解】解:由圖象可知,機器人距離點A1個單位長度,可能在F或B點,則正六邊形邊長為1.故①正確;觀察圖象t在3-4之間時,圖象具有對稱性則可知,機器人在OB或OF上,則當t=3時,機器人距離點A距離為1個單位長度,機器人一定位于點O,故②正確;所有點中,只有點D到A距離為2個單位,故③正確;因為機器人可能在F點或B點出發(fā),當從B出發(fā)時,不經(jīng)過點E,故④錯誤.故選:C.【點睛】本題為動點問題的函數(shù)圖象探究題,解答時要注意動點到達臨界前后時圖象的變化趨勢.9、A【解析】

先求出,再求倒數(shù).【詳解】因為所以的倒數(shù)是故選A【點睛】考核知識點:絕對值,相反數(shù),倒數(shù).10、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.11、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關鍵.12、C【解析】

由平行線的判定定理可證得,選項A,B,D能證得AC∥BD,只有選項C能證得AB∥CD.注意掌握排除法在選擇題中的應用.【詳解】A.∵∠3=∠A,本選項不能判斷AB∥CD,故A錯誤;B.∵∠D=∠DCE,∴AC∥BD.本選項不能判斷AB∥CD,故B錯誤;C.∵∠1=∠2,∴AB∥CD.本選項能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項不能判斷AB∥CD,故D錯誤.故選:C.【點睛】考查平行線的判定,掌握平行線的判定定理是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

連接,根據(jù)可得,并且根據(jù)圓的半徑相等可得△OAD、△OBE都是等腰三角形,由三角形的內(nèi)角和,可得∠C=45°,則有是等腰直角三角形,可得即可求求解.【詳解】解:如圖示,連接,∵,∴,∵,,∴,,∴,∴,∵是直徑,∴,∴是等腰直角三角形,∴.【點睛】本題考查圓的性質(zhì)和直角三角形的性質(zhì),能夠根據(jù)圓性質(zhì)得出是等腰直角三角形是解題的關鍵.14、9.26×1011【解析】試題解析:9260億=9.26×1011故答案為:9.26×1011點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于1時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).15、1【解析】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=1°,故答案為:1.點睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.16、【解析】

根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個不相等的實數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關于k的方程,解方程,結合一元二次方程的定義即可求解:∵有兩個不相等的實數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.18、【解析】根據(jù)題意先求出這組數(shù)據(jù)的平均數(shù)是:(3+3+4+5+5)÷5=4,再根據(jù)方差公式求出這組數(shù)據(jù)的方差為:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)【解析】

(1)根據(jù)題意平分可得,從而證明即可解答(2)由(1)可知,再根據(jù)四邊形是平行四邊形可得,過點作延長線于點,再根據(jù)勾股定理即可解答【詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點作延長線于點.在中,【點睛】此題考查三角形全等的判定與性質(zhì),勾股定理,平行四邊形的性質(zhì),解題關鍵在于作好輔助線20、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標,表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.21、(1)證明參見解析;(2)半徑長為,=.【解析】

(1)已知點D在圓上,要連半徑證垂直,連結,則,所以,∵,∴.∴,∴∥.由得出,于是得出結論;(2)由得到,設,則.,,,由,解得值,進而求出圓的半徑及AE長.【詳解】解:(1)已知點D在圓上,要連半徑證垂直,如圖2所示,連結,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切線;(2)在和中,∵,∴.設,則.∴,.∵,∴.∴,解得=,則3x=,AE=6×-=6,∴⊙的半徑長為,=.【點睛】1.圓的切線的判定;2.銳角三角函數(shù)的應用.22、(1)△CPD.理由參見解析;(2)證明參見解析;(3)PC2=PE?PF.理由參見解析.【解析】

(1)根據(jù)菱形的性質(zhì),利用SAS來判定兩三角形全等;(2)根據(jù)第一問的全等三角形結論及已知,利用兩組角相等則兩三角形相似來判定即可;(3)根據(jù)相似三角形的對應邊成比例及全等三角形的對應邊相等即可得到結論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點睛】本題考查1.相似三角形的判定與性質(zhì);2.全等三角形的判定;3.菱形的性質(zhì),綜合性較強.23、.(1)見解析(2)【解析】

(1)根據(jù)網(wǎng)格結構找出點B、C旋轉(zhuǎn)后的對應點B′、C′的位置,然后順次連接即可.(2)先求出AC的長,再根據(jù)扇形的面積公式列式進行計算即可得解.【詳解】解:(1)△AB′C′如圖所示:(2)由圖可知,AC=2,∴線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.24、(1)20;(2)作圖見試題解析;(3).【解析】

(1)由A類的學生數(shù)以及所占的百分比即可求得答案;(2)先求出C類的女生數(shù)、D類的男生數(shù),繼而可補全條形統(tǒng)計圖;(3)首先根據(jù)題意列出表格,再利用表格求得所有等可能的結果與恰好選中一名男生和一名女生的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論