![廣東省中學山大附屬中學2024屆中考適應性考試數(shù)學試題含解析_第1頁](http://file4.renrendoc.com/view5/M01/3A/21/wKhkGGZWhgqAaPShAAJnOjjYqpQ492.jpg)
![廣東省中學山大附屬中學2024屆中考適應性考試數(shù)學試題含解析_第2頁](http://file4.renrendoc.com/view5/M01/3A/21/wKhkGGZWhgqAaPShAAJnOjjYqpQ4922.jpg)
![廣東省中學山大附屬中學2024屆中考適應性考試數(shù)學試題含解析_第3頁](http://file4.renrendoc.com/view5/M01/3A/21/wKhkGGZWhgqAaPShAAJnOjjYqpQ4923.jpg)
![廣東省中學山大附屬中學2024屆中考適應性考試數(shù)學試題含解析_第4頁](http://file4.renrendoc.com/view5/M01/3A/21/wKhkGGZWhgqAaPShAAJnOjjYqpQ4924.jpg)
![廣東省中學山大附屬中學2024屆中考適應性考試數(shù)學試題含解析_第5頁](http://file4.renrendoc.com/view5/M01/3A/21/wKhkGGZWhgqAaPShAAJnOjjYqpQ4925.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省中學山大附屬中學2024屆中考適應性考試數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個??奎c,為使所有的人步行到??奎c的路程之和最小,那么該??奎c的位置應設在()A.點A B.點B C.A,B之間 D.B,C之間2.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y63.在剛過去的2017年,我國整體經濟實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1084.已知正比例函數(shù)的圖象經過點,則此正比例函數(shù)的關系式為().A. B. C. D.5.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°6.有兩組數(shù)據(jù),A組數(shù)據(jù)為2、3、4、5、6;B組數(shù)據(jù)為1、7、3、0、9,這兩組數(shù)據(jù)的()A.中位數(shù)相等B.平均數(shù)不同C.A組數(shù)據(jù)方差更大D.B組數(shù)據(jù)方差更大7.的相反數(shù)是()A.2 B.﹣2 C.4 D.﹣8.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣310.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(
)A. B. C. D.11.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有()A.1 B.2 C.3 D.412.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F(xiàn)分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.欣欣超市為促銷,決定對A,B兩種商品統(tǒng)一進行打8折銷售,打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元,打折后,小敏買50件A商品和40件B商品僅需________元.14.如圖,在△ABC中,BD和CE是△ABC的兩條角平分線.若∠A=52°,則∠1+∠2的度數(shù)為_______.15.在平面直角坐標系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.16.如圖是由大小完全相同的正六邊形組成的圖形,小軍準備用紅色、黃色、藍色隨機給每個正六邊形分別涂上其中的一種顏色,則上方的正六邊形涂紅色的概率是_______.17.如圖,在一次數(shù)學活動課上,小明用18個棱長為1的正方體積木搭成一個幾何體,然后他請小亮用其他棱長為1的正方體積木在旁邊再搭一個幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個無空隙的大長方體(不改變小明所搭幾何體的形狀).請從下面的A、B兩題中任選一題作答,我選擇__________.A、按照小明的要求搭幾何體,小亮至少需要__________個正方體積木.B、按照小明的要求,小亮所搭幾何體的表面積最小為__________.18.如圖,在平面直角坐標系中,已知C(1,),△ABC與△DEF位似,原點O是位似中心,要使△DEF的面積是△ABC面積的5倍,則點F的坐標為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.20.(6分)博鰲亞洲論壇2018年年會于4月8日在海南博鰲拉開帷幕,組委會在會議中心的墻壁上懸掛會旗,已知矩形DCFE的兩邊DE,DC長分別為1.6m,1.2m.旗桿DB的長度為2m,DB與墻面AB的夾角∠DBG為35°.當會旗展開時,如圖所示,(1)求DF的長;(2)求點E到墻壁AB所在直線的距離.(結果精確到0.1m.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)21.(6分)如圖,已知:△ABC中,AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE.求證:MD=ME.22.(8分)在平面直角坐標系中,關于的一次函數(shù)的圖象經過點,且平行于直線.(1)求該一次函數(shù)表達式;(2)若點Q(x,y)是該一次函數(shù)圖象上的點,且點Q在直線的下方,求x的取值范圍.23.(8分)解不等式組,并將它的解集在數(shù)軸上表示出來.24.(10分)已知,關于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判斷此方程根的情況;(2)若x=2是該方程的一個根,求m的值.25.(10分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.26.(12分)如圖1,一枚質地均勻的正六面體骰子的六個面分別標有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時針方向連續(xù)跳幾個邊長。如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落在圈D;若第二次擲得2,就從圈D開始順時針連續(xù)跳2個邊長,落得圈B;…設游戲者從圈A起跳.小賢隨機擲一次骰子,求落回到圈A的概率P1.小南隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?27.(12分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
此題為數(shù)學知識的應用,由題意設一個停靠點,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為??奎c,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間停靠時,設??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間??繒r,設??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應設在點A;故選A.【點睛】此題為數(shù)學知識的應用,考查知識點為兩點之間線段最短.2、D【解析】
根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質,對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關的整式運算法則要求學生很熟練,才能正確求出結果.3、B【解析】
根據(jù)科學記數(shù)法進行解答.【詳解】1315萬即13510000,用科學記數(shù)法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數(shù)法,科學記數(shù)法表示數(shù)的標準形式是a×10n(1≤│a│<10且n為整數(shù)).4、A【解析】
根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標代入解析式,利用方程解決問題.5、A【解析】
由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點睛】本題考查了等腰三角形的性質.關鍵是利用等腰三角形的底角相等,外角的性質,內角和定理,列方程求解.6、D【解析】
分別求出兩組數(shù)據(jù)的中位數(shù)、平均數(shù)、方差,比較即可得出答案.【詳解】A組數(shù)據(jù)的中位數(shù)是:4,平均數(shù)是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數(shù)據(jù)的中位數(shù)是:3,平均數(shù)是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數(shù)據(jù)的中位數(shù)不相等,平均數(shù)相等,B組方差更大.故選D.【點睛】本題考查了中位數(shù)、平均數(shù)、方差的計算,熟練掌握中位數(shù)、平均數(shù)、方差的計算方法是解答本題的關鍵.7、A【解析】分析:根據(jù)只有符號不同的兩個數(shù)是互為相反數(shù)解答即可.詳解:的相反數(shù)是,即2.故選A.點睛:本題考查了相反數(shù)的定義,解答本題的關鍵是熟練掌握相反數(shù)的定義,正數(shù)的相反數(shù)是負數(shù),0的相反數(shù)是0,負數(shù)的相反數(shù)是正數(shù).8、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.9、D【解析】
先得到拋物線y=x2的頂點坐標(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.10、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.11、C【解析】
①圖中有3個等腰直角三角形,故結論錯誤;②根據(jù)ASA證明即可,結論正確;③利用面積法證明即可,結論正確;④利用三角形的中線的性質即可證明,結論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質、等腰直角三角形的判定和性質、三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考選擇題中的壓軸題.12、B【解析】
首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F(xiàn)分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點睛】本題結合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
設A、B兩種商品的售價分別是1件x元和1件y元,根據(jù)題意列出x和y的二元一次方程組,解方程組求出x和y的值,進而求解即可.【詳解】解:設A、B兩種商品的售價分別是1件x元和1件y元,根據(jù)題意得,解得.所以0.8×(8×50+2×40)=1(元).即打折后,小敏買50件A商品和40件B商品僅需1元.故答案為1.【點睛】本題考查了利用二元一次方程組解決現(xiàn)實生活中的問題.解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程組,再求解.14、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的兩條角平分線,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案為64°.點睛:本題考查的是三角形內角和定理、角平分線的定義,掌握三角形內角和等于180°是解題的關鍵.15、【解析】
可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點睛】此題考查勾股定理,三角形相似的判定及性質,最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.16、【解析】試題分析:上方的正六邊形涂紅色的概率是,故答案為.考點:概率公式.17、A,18,1【解析】
A、首先確定小明所搭幾何體所需的正方體的個數(shù),然后確定兩人共搭建幾何體所需小立方體的數(shù)量,求差即可;
B、分別得到前后面,上下面,左右面的面積,相加即可求解.【詳解】A、∵小亮所搭幾何體恰好可以和小明所搭幾何體拼成一個無縫隙的大長方體,
∴該長方體需要小立方體4×32=36個,
∵小明用18個邊長為1的小正方體搭成了一個幾何體,
∴小亮至少還需36-18=18個小立方體,
B、表面積為:2×(8+8+7)=1.
故答案是:A,18,1.【點睛】考查了由三視圖判斷幾何體的知識,能夠確定兩人所搭幾何體的形狀是解答本題的關鍵.18、(,)【解析】
根據(jù)相似三角形的性質求出相似比,根據(jù)位似變換的性質計算即可.【詳解】解:∵△ABC與△DEF位似,原點O是位似中心,要使△DEF的面積是△ABC面積的5倍,則△DEF的邊長是△ABC邊長的倍,∴點F的坐標為(1×,×),即(,),故答案為:(,).【點睛】本題考查的是位似變換,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或﹣k.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2);(3)1.【解析】
(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線的判定定理得到AE為⊙O的切線;(2)設⊙O的半徑為r,利用等腰三角形的性質得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據(jù)垂徑定理得到BH=HG=,所以BG=1.【詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線,∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線;(2)解:設⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.20、(1)1m.(1)1.5m.【解析】
(1)由題意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【詳解】解:(1)在Rt△DEF中,由題意知ED=1.6m,BD=1m,DF==1.答:DF長為1m.(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1?sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6?cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E點離墻面AB的最遠距離為1.5m.【點睛】本題主要考查三角函數(shù)的知識,牢記公式并靈活運用是解題的關鍵。21、證明見解析.【解析】試題分析:根據(jù)等腰三角形的性質可證∠DBM=∠ECM,可證△BDM≌△CEM,可得MD=ME,即可解題.試題解析:證明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中點,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考點:1.等腰三角形的性質;2.全等三角形的判定與性質.22、(1);(2).【解析】
(1)由題意可設該一次函數(shù)的解析式為:,將點M(4,7)代入所設解析式求出b的值即可得到一次函數(shù)的解析式;(2)根據(jù)直線上的點Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結果.【詳解】解:(1)∵一次函數(shù)平行于直線,∴可設該一次函數(shù)的解析式為:,∵直線過點M(4,7),∴8+b=7,解得b=-1,∴一次函數(shù)的解析式為:y=2x-1;(2)∵點Q(x,y)是該一次函數(shù)圖象上的點,∴y=2x-1,又∵點Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【點睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式以及一次函數(shù)與不等式的關系,屬于??碱}型,熟練掌握待定系數(shù)法與一次函數(shù)與不等式的關系是解題的關鍵.23、x≤1,解集表示在數(shù)軸上見解析【解析】
首先根據(jù)不等式的解法求解不等式,然后在數(shù)軸上表示出解集.【詳解】去分母,得:3x﹣2(x﹣1)≤3,去括號,得:3x﹣2x+2≤3,移項,得:3x﹣2x≤3﹣2,合并同類項,得:x≤1,將解集表示在數(shù)軸上如下:【點睛】本題考查了解一元一次不等式,解題的關鍵是掌握不等式的解法以及在數(shù)軸上表示不等式的解集.24、(1)證明見解析;(2)m=2或m=1.【解析】
(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;(2)將x=2代入方程得到關于m的方程,解之可得.【詳解】(1)∵△=(﹣m)2﹣4×1×(m2﹣1)=m2﹣m2+4=4>0,∴方程有兩個不相等的實數(shù)根;(2)將x=2代入方程,得:4﹣2m+m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=1.【點睛】本題考查了根的判別式以及解一元二次方程,解題的關鍵是:(1)牢記“當△>0時,方程有兩個不相等的實數(shù)根”;(2)將x=2代入原方程求出m值.25、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】
(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智慧社區(qū)建設股東合同協(xié)議
- 2025年度婚禮燈光音響租賃合同
- 電子競技行業(yè)知識產權保護探討
- 2025年度城市軌道交通車輛運營維護合同范本
- 土地分割申請書
- 2025年度智能建筑節(jié)能改造施工承包合同
- 電子競技產業(yè)的未來趨勢與挑戰(zhàn)應對策略分析
- 2025年度海外市場調研與分析服務合同
- 大學生勤工助學申請書
- 讀書困難申請書
- 2024年監(jiān)控安裝合同范文6篇
- 2024年山東省高考政治試卷真題(含答案逐題解析)
- 煙葉復烤能源管理
- 應收賬款管理
- 食品安全管理員考試題庫298題(含標準答案)
- 非ST段抬高型急性冠脈綜合征診斷和治療指南(2024)解讀
- 2024年山東濟寧初中學業(yè)水平考試地理試卷真題(含答案詳解)
- 撫恤金喪葬費協(xié)議書模板
- 準備單元 雪地上的“足跡”(教學設計)-2023-2024學年五年級下冊科學大象版
- 信息技術必修一《數(shù)據(jù)與計算》三章第二節(jié)《數(shù)據(jù)分析與可視化》教案
- NB-T32042-2018光伏發(fā)電工程建設監(jiān)理規(guī)范
評論
0/150
提交評論