北京市西城區(qū)北京師范大附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第1頁
北京市西城區(qū)北京師范大附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第2頁
北京市西城區(qū)北京師范大附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第3頁
北京市西城區(qū)北京師范大附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第4頁
北京市西城區(qū)北京師范大附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市西城區(qū)北京師范大附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)押題卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,拋物線y=ax2+bx+c(a≠0)過點(diǎn)(1,0)和點(diǎn)(0,﹣2),且頂點(diǎn)在第三象限,設(shè)P=a﹣b+c,則P的取值范圍是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<02.一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時(shí),特快車的速度為150千米/小時(shí),甲乙兩地之間的距離為1000千米,兩車同時(shí)出發(fā),則圖中折線大致表示兩車之間的距離(千米)與快車行駛時(shí)間t(小時(shí))之間的函數(shù)圖象是A. B.C. D.3.如圖,任意轉(zhuǎn)動(dòng)正六邊形轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針指向大于3的數(shù)的概率是()A. B. C. D.4.如圖是二次函數(shù)y=ax2+bx+c的圖象,對(duì)于下列說法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當(dāng)x>0時(shí),y隨x的增大而減小,其中正確的是()A.①②③ B.①②④ C.②③④ D.③④⑤5.一個(gè)圓錐的底面半徑為,母線長(zhǎng)為6,則此圓錐的側(cè)面展開圖的圓心角是()A.180° B.150° C.120° D.90°6.關(guān)于x的一元二次方程x2-2x-(m-1)=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.且 B. C.且 D.7.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中結(jié)論正確的個(gè)數(shù)是()A.1 B.2 C.3 D.49.已知a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.1010.某校九年級(jí)一班全體學(xué)生2017年中招理化生實(shí)驗(yàn)操作考試的成績(jī)統(tǒng)計(jì)如下表,根據(jù)表中的信息判斷,下列結(jié)論中錯(cuò)誤的是()成績(jī)(分)3029282618人數(shù)(人)324211A.該班共有40名學(xué)生B.該班學(xué)生這次考試成績(jī)的平均數(shù)為29.4分C.該班學(xué)生這次考試成績(jī)的眾數(shù)為30分D.該班學(xué)生這次考試成績(jī)的中位數(shù)為28分11.已知函數(shù),則使y=k成立的x值恰好有三個(gè),則k的值為()A.0 B.1 C.2 D.312.如圖所示,數(shù)軸上兩點(diǎn)A,B分別表示實(shí)數(shù)a,b,則下列四個(gè)數(shù)中最大的一個(gè)數(shù)是(

)A.a(chǎn)

B.b

C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.某航班每次飛行約有111名乘客,若飛機(jī)失事的概率為p=1.11115,一家保險(xiǎn)公司要為乘客保險(xiǎn),許諾飛機(jī)一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險(xiǎn)公司應(yīng)向每位乘客至少收取_____元保險(xiǎn)費(fèi)才能保證不虧本.14.已知a、b滿足a2+b2﹣8a﹣4b+20=0,則a2﹣b2=_____.15.在△ABC中,AB=AC,把△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N.如果△CAN是等腰三角形,則∠B的度數(shù)為___________.16.如圖,BD是矩形ABCD的一條對(duì)角線,點(diǎn)E,F(xiàn)分別是BD,DC的中點(diǎn).若AB=4,BC=3,則AE+EF的長(zhǎng)為_____.17.若關(guān)于x的方程x2﹣8x+m=0有兩個(gè)相等的實(shí)數(shù)根,則m=_____.18.如果一個(gè)三角形有一條邊上的高等于這條邊的一半,那么我們把這個(gè)三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜邊AB=5,則它的周長(zhǎng)等于_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,內(nèi)接于,,的延長(zhǎng)線交于點(diǎn).(1)求證:平分;(2)若,,求和的長(zhǎng).20.(6分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.21.(6分)如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E做直線l∥BC.(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).22.(8分)如圖,我們把一個(gè)半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標(biāo)軸的交點(diǎn),直線與“果圓”中的拋物線交于兩點(diǎn)(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長(zhǎng);(2)如圖,為直線下方“果圓”上一點(diǎn),連接,設(shè)與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點(diǎn),使,如果存在,直接寫出點(diǎn)坐標(biāo),如果不存在,請(qǐng)說明理由23.(8分)如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).(1)求證:≌;(2)當(dāng)時(shí),求四邊形AECF的面積.24.(10分)如圖,在Rt△ABC中,,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點(diǎn),則當(dāng)=______時(shí),四邊形BECD是正方形.25.(10分)已知2是關(guān)于x的方程x2﹣2mx+3m=0的一個(gè)根,且這個(gè)方程的兩個(gè)根恰好是等腰△ABC的兩條邊長(zhǎng),則△ABC的周長(zhǎng)為_____.26.(12分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,4);點(diǎn)D的坐標(biāo)為(0,2),點(diǎn)P為二次函數(shù)圖象上的動(dòng)點(diǎn).(1)求二次函數(shù)的表達(dá)式;(2)當(dāng)點(diǎn)P位于第二象限內(nèi)二次函數(shù)的圖象上時(shí),連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設(shè)平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點(diǎn)F,使∠PDF與∠ADO互余?若存在,直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說明理由.27.(12分)計(jì)算:(-1)-1-++|1-3|

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

解:∵二次函數(shù)的圖象開口向上,∴a>1.∵對(duì)稱軸在y軸的左邊,∴<1.∴b>1.∵圖象與y軸的交點(diǎn)坐標(biāo)是(1,﹣2),過(1,1)點(diǎn),代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故選A.【點(diǎn)睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,利用數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.2、C【解析】分三段討論:①兩車從開始到相遇,這段時(shí)間兩車距迅速減小;②相遇后向相反方向行駛至特快到達(dá)甲地,這段時(shí)間兩車距迅速增加;③特快到達(dá)甲地至快車到達(dá)乙地,這段時(shí)間兩車距緩慢增大;結(jié)合圖象可得C選項(xiàng)符合題意.故選C.3、D【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個(gè)數(shù),大于3的有3個(gè),∴P(大于3)=.故選D.點(diǎn)睛:本題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.4、C【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由圖象可知:a>0,c<0,∴ac<0,故①錯(cuò)誤;②由于對(duì)稱軸可知:<1,∴2a+b>0,故②正確;③由于拋物線與x軸有兩個(gè)交點(diǎn),∴△=b2﹣4ac>0,故③正確;④由圖象可知:x=1時(shí),y=a+b+c<0,故④正確;⑤當(dāng)x>時(shí),y隨著x的增大而增大,故⑤錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查二次函數(shù),解題的關(guān)鍵是熟練運(yùn)用二次函數(shù)的圖象與性質(zhì),本題屬于基礎(chǔ)題型.5、B【解析】

解:,解得n=150°.故選B.考點(diǎn):弧長(zhǎng)的計(jì)算.6、A【解析】

根據(jù)一元二次方程的系數(shù)結(jié)合根的判別式△>1,即可得出關(guān)于m的一元一次不等式,解之即可得出實(shí)數(shù)m的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個(gè)不相等的實(shí)數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【點(diǎn)睛】本題考查了根的判別式,牢記“當(dāng)△>1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.7、D【解析】

根據(jù)合并同類項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則進(jìn)行計(jì)算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯(cuò)誤;B:x8÷x2=x8-2=x6,故B錯(cuò)誤;C:=,故C錯(cuò)誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【點(diǎn)睛】本題考查了合并同類項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則.其中指數(shù)為分?jǐn)?shù)的情況在初中階段很少出現(xiàn).8、C【解析】

試題解析:∵圖象與x軸有兩個(gè)交點(diǎn),∴方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正確;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正確;∵當(dāng)x=﹣2時(shí),y>0,∴4a﹣2b+c>0,∴4a+c>2b,③錯(cuò)誤;∵由圖象可知x=﹣1時(shí)該二次函數(shù)取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正確∴正確的有①②④三個(gè),故選C.考點(diǎn):二次函數(shù)圖象與系數(shù)的關(guān)系.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、A【解析】∵9<11<16,∴,即,∵a,b為兩個(gè)連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.10、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績(jī)是30分的人有32人,最多,故C正確;D.該班學(xué)生這次考試成績(jī)的中位數(shù)為30分,故D錯(cuò)誤;11、D【解析】

解:如圖:利用頂點(diǎn)式及取值范圍,可畫出函數(shù)圖象會(huì)發(fā)現(xiàn):當(dāng)x=3時(shí),y=k成立的x值恰好有三個(gè).故選:D.12、D【解析】

∵負(fù)數(shù)小于正數(shù),在(0,1)上的實(shí)數(shù)的倒數(shù)比實(shí)數(shù)本身大.∴<a<b<,故選D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、21【解析】每次約有111名乘客,如飛機(jī)一旦失事,每位乘客賠償41萬人民幣,共計(jì)4111萬元,由題意可得一次飛行中飛機(jī)失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應(yīng)該收取保險(xiǎn)費(fèi)每人=21元.14、1【解析】

利用配方法把原式化為平方和的形式,根據(jù)偶次方的非負(fù)性求出a、b,計(jì)算即可.【詳解】a2+b2﹣8a﹣4b+20=0,a2﹣8a+16+b2﹣4b+4=0,(a﹣4)2+(b﹣2)2=0a﹣4=0,b﹣2=0,a=4,b=2,則a2﹣b2=16﹣4=1,故答案為1.【點(diǎn)睛】本題考查了配方法的應(yīng)用、非負(fù)數(shù)的性質(zhì),掌握完全平方公式、偶次方的非負(fù)性是解題的關(guān)鍵.15、或.【解析】

MN是AB的中垂線,則△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后對(duì)△ANC中的邊進(jìn)行討論,然后在△ABC中,利用三角形內(nèi)角和定理即可求得∠B的度數(shù).解:∵把△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N,∴MN是AB的中垂線.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.設(shè)∠B=x°,則∠C=∠BAN=x°.1)當(dāng)AN=NC時(shí),∠CAN=∠C=x°.則在△ABC中,根據(jù)三角形內(nèi)角和定理可得:4x=180,解得:x=45°則∠B=45°;2)當(dāng)AN=AC時(shí),∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此時(shí)不成立;3)當(dāng)CA=CN時(shí),∠NAC=∠ANC=.在△ABC中,根據(jù)三角形內(nèi)角和定理得到:x+x+x+=180,解得:x=36°.故∠B的度數(shù)為45°或36°.16、1【解析】

先根據(jù)三角形中位線定理得到的長(zhǎng),再根據(jù)直角三角形斜邊上中線的性質(zhì),即可得到的長(zhǎng),進(jìn)而得出計(jì)算結(jié)果.【詳解】解:∵點(diǎn)E,F(xiàn)分別是的中點(diǎn),∴FE是△BCD的中位線,.又∵E是BD的中點(diǎn),∴Rt△ABD中,,故答案為1.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)以及三角形中位線定理的運(yùn)用,解題時(shí)注意:在直角三角形中,斜邊上的中線等于斜邊的一半;三角形的中位線平行于第三邊,并且等于第三邊的一半.17、1【解析】

根據(jù)判別式的意義得到△=(﹣8)2﹣4m=0,然后解關(guān)于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程無實(shí)數(shù)根.18、5+3或5+5.【解析】

分兩種情況討論:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分別依據(jù)勾股定理和三角形的面積公式,即可得到該三角形的周長(zhǎng)為5+3或5+5.【詳解】由題意可知,存在以下兩種情況:(1)當(dāng)一條直角邊是另一條直角邊的一半時(shí),這個(gè)直角三角形是半高三角形,此時(shí)設(shè)較短的直角邊為a,則較長(zhǎng)的直角邊為2a,由勾股定理可得:,解得:,∴此時(shí)較短的直角邊為,較長(zhǎng)的直角邊為,∴此時(shí)直角三角形的周長(zhǎng)為:;(2)當(dāng)斜邊上的高是斜邊的一半是,這個(gè)直角三角形是半高三角形,此時(shí)設(shè)兩直角邊分別為x、y,這有題意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此時(shí)這個(gè)直角三角形的周長(zhǎng)為:.綜上所述,這個(gè)半高直角三角形的周長(zhǎng)為:或.故答案為或.【點(diǎn)睛】(1)讀懂題意,弄清“半高三角形”的含義是解題的基礎(chǔ);(2)根據(jù)題意,若直角三角形是“半高三角形”,則存在兩種情況:①一條直角邊是另一條直角邊的一半;②斜邊上的高是斜邊的一半;解題時(shí)這兩種情況都要討論,不要忽略了其中一種.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)AC=,CD=,【解析】分析:(1)延長(zhǎng)AO交BC于H,連接BO,證明A、O在線段BC的垂直平分線上,得出AO⊥BC,再由等腰三角形的性質(zhì)即可得出結(jié)論;(2)延長(zhǎng)CD交⊙O于E,連接BE,則CE是⊙O的直徑,由圓周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,證出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位線定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的長(zhǎng)即可.本題解析:解:(1)證明:延長(zhǎng)AO交BC于H,連接BO.∵AB=AC,OB=OC,∴A,O在線段BC的垂直平分線上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延長(zhǎng)CD交⊙O于E,連接BE,則CE是⊙O的直徑.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位線.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.點(diǎn)睛:本題考查了等腰三角形的判定與性質(zhì)、三角函數(shù)及圓的有關(guān)計(jì)算,(1)中由三線合一定理求解是解題的關(guān)鍵,(2)中由圓周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函數(shù)及三角形中位線定理求出AC即可,本題綜合性強(qiáng),有一定難度.20、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解析】

(1)先分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式組的解集即可.【詳解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式組的解集為﹣1≤x<1.【點(diǎn)睛】本題考查了解一元一次不等式組和解一元二次方程,能把一元二次方程轉(zhuǎn)化成一元一次方程是解(1)的關(guān)鍵,能根據(jù)不等式的解集找出不等式組的解集是解(2)的關(guān)鍵.21、(1)直線l與⊙O相切;(2)證明見解析;(3)214【解析】試題分析:(1)連接OE、OB、OC.由題意可證明BE=(2)先由角平分線的定義可知∠ABF=∠CBF,然后再證明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依據(jù)等角對(duì)等邊證明BE=EF即可;(3)先求得BE的長(zhǎng),然后證明△BED∽△AEB,由相似三角形的性質(zhì)可求得AE的長(zhǎng),于是可得到AF的長(zhǎng).試題解析:(1)直線l與⊙O相切.理由如下:如圖1所示:連接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴BE=∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直線l與⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴DEBE=BEAE,即∴AF=AE﹣EF=494﹣1=21考點(diǎn):圓的綜合題.22、(1);6;(2)有最小值;(3),.【解析】

(1)先求出點(diǎn)B,C坐標(biāo),利用待定系數(shù)法求出拋物線解析式,進(jìn)而求出點(diǎn)A坐標(biāo),即可求出半圓的直徑,再構(gòu)造直角三角形求出點(diǎn)D的坐標(biāo)即可求出BD;

(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個(gè)交點(diǎn),求出直線EG解析式,即可求出CG,結(jié)論得證.

(3)求出線段AC,BC進(jìn)而判斷出滿足條件的一個(gè)點(diǎn)P和點(diǎn)B重合,再利用拋物線的對(duì)稱性求出另一個(gè)點(diǎn)P.【詳解】解:(1)對(duì)于直線y=x-3,令x=0,

∴y=-3,

∴B(0,-3),

令y=0,

∴x-3=0,

∴x=4,

∴C(4,0),

∵拋物線y=x2+bx+c過B,C兩點(diǎn),∴∴∴拋物線的解析式為y=;令y=0,

∴=0,∴x=4或x=-1,

∴A(-1,0),

∴AC=5,

如圖2,記半圓的圓心為O',連接O'D,

∴O'A=O'D=O'C=AC=,

∴OO'=OC-O'C=4-=,

在Rt△O'OD中,OD==2,∴D(0,2),

∴BD=2-(-3)=5;(2)如圖3,

∵A(-1,0),C(4,0),

∴AC=5,

過點(diǎn)E作EG∥BC交x軸于G,

∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設(shè)高為h,

∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個(gè)交點(diǎn)時(shí),CG最大,

∵直線BC的解析式為y=x-3,

設(shè)直線EG的解析式為y=x+m①,

∵拋物線的解析式為y=x2-x-3②,

聯(lián)立①②化簡(jiǎn)得,3x2-12x-12-4m=0,

∴△=144+4×3×(12+4m)=0,

∴m=-6,

∴直線EG的解析式為y=x-6,

令y=0,

∴x-6=0,

∴x=8,

∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,

∴半圓上除點(diǎn)A,C外任意一點(diǎn)Q,都有∠AQC=90°,

∴點(diǎn)P只能在拋物線部分上,

∵B(0,-3),C(4,0),

∴BC=5,

∵AC=5,

∴AC=BC,

∴∠BAC=∠ABC,

當(dāng)∠APC=∠CAB時(shí),點(diǎn)P和點(diǎn)B重合,即:P(0,-3),

由拋物線的對(duì)稱性知,另一個(gè)點(diǎn)P的坐標(biāo)為(3,-3),

即:使∠APC=∠CAB,點(diǎn)P坐標(biāo)為(0,-3)或(3,-3).【點(diǎn)睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),拋物線的對(duì)稱性,等腰三角形的判定和性質(zhì),判斷出CG最大時(shí),兩三角形面積之比最小是解本題的關(guān)鍵.23、(1)見解析;(2)【解析】

(1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據(jù)全等三角形的判定推出即可;

(2)求出△ABE是等邊三角形,求出高AH的長(zhǎng),再求出面積即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點(diǎn)E、F分別是BC、AD的中點(diǎn),∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點(diǎn)E、F分別是BC、AD的中點(diǎn),,∴,,∴,,∴四邊形AECF是平行四邊形,∵,∴四邊形AECF是菱形,∴,∵,∴,即是等邊三角形,,由勾股定理得:,∴四邊形AECF的面積是.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)和判定,全等三角形的判定,平行四邊形的性質(zhì)和判定等知識(shí)點(diǎn),能綜合運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵.24、(1)詳見解析;(2)菱形;(3)當(dāng)∠A=45°,四邊形BECD是正方形.【解析】

(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵M(jìn)N//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點(diǎn),∴BD=AD,∵CE=AD,∴BD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論