2023-2024學年浙江省嘉興一中高一數(shù)學第二學期期末考試試題含解析_第1頁
2023-2024學年浙江省嘉興一中高一數(shù)學第二學期期末考試試題含解析_第2頁
2023-2024學年浙江省嘉興一中高一數(shù)學第二學期期末考試試題含解析_第3頁
2023-2024學年浙江省嘉興一中高一數(shù)學第二學期期末考試試題含解析_第4頁
2023-2024學年浙江省嘉興一中高一數(shù)學第二學期期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年浙江省嘉興一中高一數(shù)學第二學期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)f(x)=x,x≥0,|x2A.a(chǎn)<0 B.0<a<1 C.a(chǎn)>1 D.a(chǎn)≥12.已知,函數(shù),存在常數(shù),使得為偶函數(shù),則可能的值為()A. B. C. D.3.在下列區(qū)間中,函數(shù)的零點所在的區(qū)間為()A. B. C. D.4.已知,其中,若函數(shù)在區(qū)間內(nèi)有零點,則實數(shù)的取值可能是()A. B. C. D.5.已知,是兩個變量,下列四個散點圖中,,雖負相關(guān)趨勢的是()A. B.C. D.6.在平行四邊形中,為一條對角線,,,則=()A.(2,4) B.(3,5) C.(1,1) D.(-1,-1)7.的內(nèi)角的對邊分別為,若的面積為,則()A. B. C. D.8.若,A點的坐標為,則B點的坐標為()A. B. C. D.9.數(shù)列,…的一個通項公式是()A.B.C.D.10.已知函數(shù)的導函數(shù)的圖象如圖所示,則()A.既有極小值,也有極大值 B.有極小值,但無極大值C.有極大值,但無極小值 D.既無極小值,也無極大值二、填空題:本大題共6小題,每小題5分,共30分。11.若則的最小值是__________.12.若函數(shù)的圖像與直線有且僅有四個不同的交點,則的取值范圍是______13.若函數(shù)的圖象與直線恰有兩個不同交點,則的取值范圍是________.14.按照如圖所示的程序框圖,若輸入的x值依次為,0,1,運行后,輸出的y值依次為,,,則________.15.已知點和在直線的兩側(cè),則a的取值范圍是__________.16.關(guān)于的方程只有一個實數(shù)根,則實數(shù)_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列的前項和為,,.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和;(3)在(2)的條件下,當時,比較和的大小.18.已知函數(shù),.(1)求函數(shù)的最小正周期;(2)求函數(shù)的最小值和取得最小值時的取值.19.已知數(shù)列的前n項和為,且,求數(shù)列的通項公式.20.已知數(shù)列,.(1)記,證明:是等比數(shù)列;(2)當是奇數(shù)時,證明:;(3)證明:.21.數(shù)列中,,,.(1)證明:數(shù)列是等比數(shù)列.(2)若,,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

令g(x)=0得f(x)=a,再利用函數(shù)的圖像分析解答得到a的取值范圍.【詳解】令g(x)=0得f(x)=a,函數(shù)f(x)的圖像如圖所示,當直線y=a在x軸和直線x=1之間時,函數(shù)y=f(x)的圖像與直線y=a有四個零點,所以0<a<1.故選:B【點睛】本題主要考查函數(shù)的圖像和性質(zhì),考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平,屬于中檔題.2、C【解析】

直接利用三角函數(shù)性質(zhì)的應(yīng)用和函數(shù)的奇偶性的應(yīng)用求出結(jié)果.【詳解】解:由函數(shù),存在常數(shù),使得為偶函數(shù),則,由于函數(shù)為偶函數(shù),故,所以,當時,.故選:C.【點睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】

由函數(shù)的解析式,再根據(jù)函數(shù)零點的存在定理可得函數(shù)的零點所在的區(qū)間.【詳解】函數(shù)的零點所在的區(qū)間即函數(shù)與的交點所在區(qū)間.由函數(shù)與在定義域上只有一個交點,如圖.函數(shù)在定義域上只有一個零點.又,所以.所以的零點在上故選:B【點睛】本題主要考查求函數(shù)的零點所在區(qū)間,函數(shù)零點的存在定理,屬于基礎(chǔ)題.4、D【解析】

求出函數(shù),令,,根據(jù)不等式求解,即可得到可能的取值.【詳解】由題:,其中,令,,若函數(shù)在區(qū)間內(nèi)有零點,則有解,解得:當當當結(jié)合四個選項可以分析,實數(shù)的取值可能是.故選:D【點睛】此題考查根據(jù)函數(shù)零點求參數(shù)的取值范圍,需要熟練掌握三角函數(shù)的圖像性質(zhì),求出函數(shù)零點再討論其所在區(qū)間列不等式求解.5、C【解析】由圖可知C選項中的散點圖描述了隨著的增加而減小的變化趨勢,故選C6、C【解析】試題分析:,故選C.考點:平面向量的線性運算.7、C【解析】

由題意可得,化簡后利用正弦定理將“邊化為角“即可.【詳解】解:的面積為,,,故選:C.【點睛】本題主要考查正弦定理的應(yīng)用和三角形的面積公式,屬于基礎(chǔ)題.8、A【解析】

根據(jù)向量坐標的求解公式可求.【詳解】設(shè),因為A點的坐標為,所以.所以,即.故選:A.【點睛】本題主要考查平面向量坐標的運算,側(cè)重考查數(shù)學運算的核心素養(yǎng).9、D【解析】試題分析:由題意得,可采用驗證法,分別令,即可作出選擇,只有滿足題意,故選D.考點:歸納數(shù)列的通項公式.10、B【解析】由導函數(shù)圖象可知,在上為負,在上非負,在上遞減,在遞增,在處有極小值,無極大值,故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)對數(shù)相等得到,利用基本不等式求解的最小值得到所求結(jié)果.【詳解】則,即由題意知,則,則當且僅當,即時取等號本題正確結(jié)果:【點睛】本題考查基本不等式求解和的最小值問題,關(guān)鍵是能夠利用對數(shù)相等得到的關(guān)系,從而構(gòu)造出符合基本不等式的形式.12、【解析】

將函數(shù)寫成分段函數(shù)的形式,再畫出函數(shù)的圖象,則直線與函數(shù)圖象有四個交點,從而得到的取值范圍.【詳解】因為因為所以,所以圖象關(guān)于對稱,其圖象如圖所示:因為直線與函數(shù)圖象有四個交點,所以.故答案為:.【點睛】本題考查利用三角函數(shù)圖象研究與直線交點個數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,作圖時發(fā)現(xiàn)圖象關(guān)于對稱,是快速畫出圖象的關(guān)鍵.13、【解析】

作出函數(shù)的圖像,根據(jù)圖像可得答案.【詳解】因為,所以,所以,所以,作出函數(shù)的圖像,由圖可知故答案為:【點睛】本題考查了正弦型函數(shù)的圖像,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.14、5【解析】

根據(jù)程序框圖依次計算出、、后即可得解.【詳解】由程序框圖可知,;,;,.所以.故答案為:.【點睛】本題考查了程序框圖的應(yīng)用,屬于基礎(chǔ)題.15、【解析】試題分析:若點A(3,1)和點B(4,6)分別在直線3x-2y+a=0兩側(cè),則將點代入直線中是異號,則[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填寫-7<a<0考點:本試題主要考查了二元一次不等式與平面區(qū)域的運用.點評:解決該試題的關(guān)鍵是根據(jù)A、B在直線兩側(cè),則A、B坐標代入直線方程所得符號相反構(gòu)造不等式.16、【解析】

首先從方程看是不能直接解出這個方程的根的,因此可以轉(zhuǎn)化成函數(shù),從函數(shù)的奇偶性出發(fā)。【詳解】設(shè),則∴為偶函數(shù),其圖象關(guān)于軸對稱,又依題意只有一個零點,故此零點只能是,所以,∴,∴,∴,∴,故答案為:【點睛】本題主要考查了函數(shù)奇偶性以及零點與方程的關(guān)系,方程的根就是對應(yīng)函數(shù)的零點,本題屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】

(1)設(shè)等差數(shù)列的公差為,利用等差數(shù)列的通項公式和求和公式,解方程可得首項和公差,進而得到通項公式;(2)由(1)得,利用等差數(shù)列的求和公式可得;(3)分別求得和,作差比較即可得到大小關(guān)系.【詳解】(1)設(shè)等差數(shù)列的公差為,由,得,化簡得①.由,得,得②.由①②解得:,,則.則數(shù)列的通項公式為.(2)由(1)得,①當時,,;②當且時,,兩式作差得:有:有:有:得由上知.(3)由(1)得由,由(2)得當時,,令.則.由,有,得,故單調(diào)遞增.又由,故,可得.【點睛】本題考查等差數(shù)列的通項公式和求和公式的運用,也考查了錯位相減法求數(shù)列的和,分類討論思想和作差比較大小的問題,屬于中檔題.18、(1);(2)當時,.【解析】

(1)利用二倍角公式將函數(shù)的解析式化簡得,再利用周期公式可得出函數(shù)的最小正周期;(2)由可得出函數(shù)的最小值和對應(yīng)的的值.【詳解】(1),因此,函數(shù)的最小正周期為;(2)由(1)知,當,即當時,函數(shù)取到最小值.【點睛】本題考查利用二倍角公式化簡,同時也考查了正弦型函數(shù)的周期和最值的求解,考查學生的化簡運算能力,屬于基礎(chǔ)題.19、【解析】

利用公式,計算的通項公式,再驗證時的情況.【詳解】當時,;當時,不滿足上式.∴【點睛】本題考查了利用求數(shù)列通項公式,忽略的情況是容易犯的錯誤.20、(1)見解析;(2)見解析;(3)見解析【解析】

(1)對遞推關(guān)系進行變形得,從而證明是等比數(shù)列;(2)由(1)得,代入所證式子,再利用放縮法進行證明;(3)由(2)可知,對分偶數(shù)和奇數(shù)計論,放縮法和等比數(shù)列求和,即可證明結(jié)論.【詳解】(1)∵,∴,且所以,數(shù)列是首項為,公比為3的等比數(shù)列.(2)由(1)可知當k是奇數(shù)時,(3)由(2)可知,當為偶數(shù)時,當為奇數(shù)時,所以.【點睛】本題考查等比數(shù)列的定義證明、等比數(shù)列前項和、不等式的放縮法證明,考查轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力和運算求解能力,求解時注意討論的突破口.21、(1)見解析(2)9或35或133【解析】

(1)分別寫出和,做商,再用表示出,代入即可得q,由可得,得證;(2)由(1)得數(shù)列的通項公式,代入并整理,根據(jù)即得m+n的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論