甘肅省平?jīng)鍪?022年中考五模數(shù)學試題含解析_第1頁
甘肅省平?jīng)鍪?022年中考五模數(shù)學試題含解析_第2頁
甘肅省平?jīng)鍪?022年中考五模數(shù)學試題含解析_第3頁
甘肅省平?jīng)鍪?022年中考五模數(shù)學試題含解析_第4頁
甘肅省平?jīng)鍪?022年中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省平?jīng)鍪?022年中考五模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△ABC中AB兩個頂點在x軸的上方,點C的坐標是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設點B的對應點B′的橫坐標是a,則點B的橫坐標是()A. B. C. D.2.如圖①是半徑為2的半圓,點C是弧AB的中點,現(xiàn)將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣3.某一超市在“五?一”期間開展有獎促銷活動,每買100元商品可參加抽獎一次,中獎的概率為.小張這期間在該超市買商品獲得了三次抽獎機會,則小張()A.能中獎一次 B.能中獎兩次C.至少能中獎一次 D.中獎次數(shù)不能確定4.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結論的個數(shù)是()A.4個 B.3個 C.2個 D.1個5.(3分)如圖,是按一定規(guī)律排成的三角形數(shù)陣,按圖中數(shù)陣的排列規(guī)律,第9行從左至右第5個數(shù)是()A.2 B. C.5 D.6.工信部發(fā)布《中國數(shù)字經(jīng)濟發(fā)展與就業(yè)白皮書(2018)》)顯示,2017年湖北數(shù)字經(jīng)濟總量1.21萬億元,列全國第七位、中部第一位.“1.21萬”用科學記數(shù)法表示為()A.1.21×103B.12.1×103C.1.21×104D.0.121×1057.下列式子成立的有()個①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個不等的實數(shù)根A.1 B.2 C.3 D.48.如圖所示,將矩形ABCD的四個角向內折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:39.下列等式從左到右的變形,屬于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x D.4my-2=2(2my-1)10.搶微信紅包成為節(jié)日期間人們最喜歡的活動之一.對某單位50名員工在春節(jié)期間所搶的紅包金額進行統(tǒng)計,并繪制成了統(tǒng)計圖.根據(jù)如圖提供的信息,紅包金額的眾數(shù)和中位數(shù)分別是()A.20,20 B.30,20 C.30,30 D.20,30二、填空題(本大題共6個小題,每小題3分,共18分)11.閱讀下面材料:在數(shù)學課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據(jù)是______.12.如圖,把一個面積為1的正方形分成兩個面積為的長方形,再把其中一個面積為的長方形分成兩個面積為的正方形,再把其中一個面積為的正方形分成兩個面積為的長方形,如此進行下去……,試用圖形揭示的規(guī)律計算:__________.13.如圖,在△ABC中,∠ACB=90°,點D是CB邊上一點,過點D作DE⊥AB于點E,點F是AD的中點,連結EF、FC、CE.若AD=2,∠CFE=90°,則CE=_____.14.如圖,PC是⊙O的直徑,PA切⊙O于點P,AO交⊙O于點B;連接BC,若,則______.15.已知一個正六邊形的邊心距為,則它的半徑為______.16.用一張扇形紙片圍成一個圓錐的側面(接縫處不計),若這個扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個圓錐的母線長為_____cm.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:x218.(8分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經(jīng)過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.19.(8分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數(shù);(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標,若不存在,說明理由.20.(8分)我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務,按要求必須在14天內完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關系:工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?設第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關系式,并求出第幾天時利潤最大,最大利潤是多少?21.(8分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結果保留根號).22.(10分)已知關于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數(shù)根x1,x1.求實數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數(shù)k的值.23.(12分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.(1)求證:DF是BF和CF的比例中項;(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.24.甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.分別求出y1,y2與x之間的關系式;當甲、乙兩個商場的收費相同時,所買商品為多少件?當所買商品為5件時,應選擇哪個商場更優(yōu)惠?請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

設點B的橫坐標為x,然后表示出BC、B′C的橫坐標的距離,再根據(jù)位似變換的概念列式計算.【詳解】設點B的橫坐標為x,則B、C間的橫坐標的長度為﹣1﹣x,B′、C間的橫坐標的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點睛】本題考查了位似變換,坐標與圖形的性質,根據(jù)位似變換的定義,利用兩點間的橫坐標的距離等于對應邊的比列出方程是解題的關鍵.2、D【解析】

連接OC交MN于點P,連接OM、ON,根據(jù)折疊的性質得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點睛】本題考查了軸對稱的性質的運用、勾股定理的運用、三角函數(shù)值的運用、扇形的面積公式的運用、三角形的面積公式的運用,解答時運用軸對稱的性質求解是關鍵.3、D【解析】

由于中獎概率為,說明此事件為隨機事件,即可能發(fā)生,也可能不發(fā)生.【詳解】解:根據(jù)隨機事件的定義判定,中獎次數(shù)不能確定故選D.【點睛】解答此題要明確概率和事件的關系:,為不可能事件;為必然事件;為隨機事件.4、B【解析】

通過圖象得到、、符號和拋物線對稱軸,將方程轉化為函數(shù)圖象交點問題,利用拋物線頂點證明.【詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經(jīng)過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數(shù)根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的各項系數(shù)與圖象位置的關系、拋物線對稱性和最值,以及用函數(shù)的觀點解決方程或不等式.5、B【解析】

根據(jù)三角形數(shù)列的特點,歸納出每一行第一個數(shù)的通用公式,即可求出第9行從左至右第5個數(shù).【詳解】根據(jù)三角形數(shù)列的特點,歸納出每n行第一個數(shù)的通用公式是,所以,第9行從左至右第5個數(shù)是=.故選B【點睛】本題主要考查歸納推理的應用,根據(jù)每一行第一個數(shù)的取值規(guī)律,利用累加法求出第9行第五個數(shù)的數(shù)值是解決本題的關鍵,考查學生的推理能力.6、C【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:1.21萬=1.21×104,故選:C.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.7、B【解析】

根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式進行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯誤;③(-)=﹣2,故錯誤;④因為△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個不等的實數(shù)根,故正確.故選B.【點睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式,屬于比較基礎的題目,熟記計算法則即可解答.8、A【解析】

先根據(jù)圖形翻折的性質可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點睛】本題考查的是圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.9、D【解析】

根據(jù)因式分解是把一個多項式轉化成幾個整式積的形式,可得答案.【詳解】解:A、是整式的乘法,故A不符合題意;

B、沒把一個多項式轉化成幾個整式積的形式,故B不符合題意;

C、沒把一個多項式轉化成幾個整式積的形式,故C不符合題意;

D、把一個多項式轉化成幾個整式積的形式,故D符合題意;

故選D.【點睛】本題考查了因式分解的意義,因式分解是把一個多項式轉化成幾個整式積的形式.10、C【解析】

根據(jù)眾數(shù)和中位數(shù)的定義,出現(xiàn)次數(shù)最多的那個數(shù)就是眾數(shù),把一組數(shù)據(jù)按照大小順序排列,中間那個數(shù)或中間兩個數(shù)的平均數(shù)叫中位數(shù).【詳解】捐款30元的人數(shù)為20人,最多,則眾數(shù)為30,中間兩個數(shù)分別為30和30,則中位數(shù)是30,故選C.【點睛】本題考查了條形統(tǒng)計圖、眾數(shù)和中位數(shù),這是基礎知識要熟練掌握.二、填空題(本大題共6個小題,每小題3分,共18分)11、兩點確定一條直線;同圓或等圓中半徑相等【解析】

根據(jù)尺規(guī)作圖的方法,兩點之間確定一條直線的原理即可解題.【詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據(jù)是兩點確定一條直線;同圓或等圓中半徑相等.【點睛】本題考查了尺規(guī)作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規(guī)作圖方法是解題關鍵.12、【解析】

結合圖形發(fā)現(xiàn)計算方法:,即計算其面積和的時候,只需讓總面積減去剩下的面積.【詳解】解:原式==故答案為:【點睛】此題注意結合圖形的面積找到計算的方法:其中的面積和等于總面積減去剩下的面積.13、【解析】

根據(jù)直角三角形的中點性質結合勾股定理解答即可.【詳解】解:,點F是AD的中點,.故答案為:.【點睛】此題重點考查學生對勾股定理的理解。熟練掌握勾股定理是解題的關鍵.14、26°【解析】

根據(jù)圓周角定理得到∠AOP=2∠C=64°,根據(jù)切線的性質定理得到∠APO=90°,根據(jù)直角三角形兩銳角互余計算即可.【詳解】由圓周角定理得:∠AOP=2∠C=64°.∵PC是⊙O的直徑,PA切⊙O于點P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.故答案為:26°.【點睛】本題考查了切線的性質、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.15、2【解析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構造直角三角形并利用解直角三角形的知識求解.16、1【解析】

設這個圓錐的母線長為xcm,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設這個圓錐的母線長為xcm,根據(jù)題意得?2π?15?x=90π,解得x=1,即這個圓錐的母線長為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.三、解答題(共8題,共72分)17、12【解析】

這道求代數(shù)式值的題目,不應考慮把x的值直接代入,通常做法是先化簡,然后再代入求值.【詳解】解:原式=?﹣=﹣=﹣=,當x=1時,原式==.【點睛】本題考查了分式的化簡求值,解題的關鍵是熟練的掌握分式的運算法則.18、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根據(jù)自變量與函數(shù)值的對應關系,可得A,C點坐標,根據(jù)代定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)相似三角形的判定與性質,可得,根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數(shù),根據(jù)二次函數(shù)的性質,可得答案;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結論.【詳解】(1)當x=0時,y=2,即C(0,2),當y=0時,x=4,即A(4,0),將A,C點坐標代入函數(shù)解析式,得,解得,拋物線的解析是為;

(2)過點P向x軸做垂線,交直線AC于點M,交x軸于點N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設點P(x,-x2+x+2),則點M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過P作x軸的平行線交y軸于R,交AC的延長線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點坐標是(2,3)或(,).【點睛】本題考查了二次函數(shù)綜合題,解(1)的關鍵是待定系數(shù)法;解(2)的關鍵是利用相似三角形的判定與性質得出,又利用了二次函數(shù)的性質;解(3)的關鍵是利用解直角三角形,要分類討論,以防遺漏.19、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點坐標為(1,2)或(4,﹣25).【解析】

(1)設交點式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計算出AC=,BC=,接著利用面積法計算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計算出BH=,CH=,再根據(jù)兩點間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【詳解】(1)設拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當n=﹣時,m=2n+=,此時H(,﹣),易得直線CD的解析式為y=﹣7x+3,解方程組得:或,此時D點坐標為(4,﹣25);當n=時,m=2n+=,此時H(),易得直線CD的解析式為y=﹣x+3,解方程組得:或,此時D點坐標為(1,2).綜上所述:D點坐標為(1,2)或(4,﹣25).【點睛】本題是二次函數(shù)綜合題.熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質和相似三角形的判定的性質;會利用待定系數(shù)法求函數(shù)解析式,把求兩函數(shù)交點問題轉化為解方程組的問題;理解坐標與圖形性質;會運用分類討論的思想解決數(shù)學問題.20、(1)工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件;(2)第11天時,利潤最大,最大利潤是845元.【解析】分析:(1)根據(jù)y=70求得x即可;(2)先根據(jù)函數(shù)圖象求得P關于x的函數(shù)解析式,再結合x的范圍分類討論,根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質求得最值即可.本題解析:解:(1)若7.5x=70,得x=>4,不符合題意;則5x+10=70,解得x=12.答:工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件.(2)由函數(shù)圖象知,當0≤x≤4時,P=40,當4<x≤14時,設P=kx+b,將(4,40)、(14,50)代入,得解得∴P=x+36.①當0≤x≤4時,W=(60-40)·7.5x=150x,∵W隨x的增大而增大,∴當x=4時,W最大=600;②當4<x≤14時,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴當x=11時,W最大=845.∵845>600,∴當x=11時,W取得最大值845元.答:第11天時,利潤最大,最大利潤是845元.點睛:本題考查了一次函數(shù)的應用、二次函數(shù)的應用,解題的關鍵是理解題意,記住利潤=出廠價-成本,學會利用函數(shù)的性質解決最值問題.21、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解析】

如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.22、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數(shù)k的取值范圍;(2)由根與系數(shù)的關系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數(shù)k的取值范圍為k≤.(2)∵關于x的方程x2+(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論