版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
couchbase
CIOSURVEY
DigitalModernizationin2025AreDataStrategiesReadyfortheAIAge?
ACouchbaseresearchreport:Investigatinghowdigitalmodernizationstrategiesareadaptingtotheriseofartificialintelligence
TableofContents
EXECUTIVESUMMARY3
PARTONE:THEDIGITALMODERNIZATIONLANDSCAPE4
PARTTWO:THEARTIFICIALINTELLIGENCEAGE7
PARTTHREE:PREPARINGFORTHEAGEOFAI10
PARTFOUR:THEDAWNOFADAPTIVEAPPLICATIONS15
CONCLUSION:HARNESSINGAI18
METHODOLOGY18
)
CIOSURVEY2
EXECUTIVESUMMARY
Asdigitalmodernizationcontinuesunabated,theriseofgenerativeAI(GenAI)is
creatingnewopportunitiesandchallengesforITteams.Alongsideextrademandsforresourcesandsecurityguardrails,AIisunlockingnewtypesofapplicationsthatcantransformtheend-userexperienceandhelpboostproductivityatatimewhenthedemandsonenterprisesareever-increasing.
Couchbase’sseventhannualsurveyofITdecisionmakersexploreshowITfunctions
arereactingtotherapidgrowthofGenAI,andAIingeneral.Hasitshiftedtheirinvestmentdecisions?Aretheyhavingtomakesacrificesinotherareastokeeppacewiththisnewtechnology?Aretheyconfidentthattheirinfrastructure,andparticularlytheirdataarchitecture,isfuture-proofedagainstrapidtechnologicalevolution?Andwhatpotentialdotheyseeinthenewintelligent,adaptive
applicationsthatAIenables?Weaskedenterpriseswith1,000+employeesfortheiranswers.
Lookingatdigitalmodernizationasawhole,thisisdefinitelyatimeofchange.Theaverageinvestmentindigitalmodernizationwas$28millionin2023.Yetthisissettoclimb–respondentsexpectinvestmenttosoarby27%to$35.5millionin2024.Andwhilefactorssuchasover-relianceonlegacytechnologies,oranunacceptableperceivedriskoffailure,arestillcausingprojectstofail,sufferdelaysorberejectedbeforetheybegin,thereisaclearunderstandingthatITneedstodomorewiththeresourcesatitsdisposal.Onaverage,enterprisesneedtoincreaseproductivitybymorethanone-thirdyear-on-yeartoremaincompetitive.
Atthesametime,GenAIisaclearpriorityforenterprises.98%ofrespondents
havespecificgoalstouseGenAIin2024,andAIwillaccountforalmostathirdofalldigitalmodernizationspendingin2023and2024–theequivalentof$21millionperenterprise.Whilemostenterpriseshavebeenabletobalancethebookswiththis
investment,26%havehadtodivertspendingfromareassuchasITsupportandsecuritytomeettheirAIgoals.
ThebiggestquestionformanyITdepartmentsiswhethertheycansupport
unconstrainedAIgrowth.Onaverage,respondentsbelievetheirITinfrastructureas-iswillbeincapableofsupportingGenAIapplicationsrunin-housewithin19
months.Becauseofthis,enterprisesarelookingatothermethodstoaccessthe
necessarycomputingpower.Forinstance,mostorganizationssayedgecomputingwillbe“critical”forenablingnewGenAIapplications,asitallowscomputingpowertobedeliveredmosteffectivelywhereit’sneeded.
Finally,thereisthequestionofwhattypesofapplicationsITteamscreateusing
GenAI.Withdevelopersconsistentlyunderpressuretocreatenew,improvedend-userexperiences,creatinggeneralistapplicationsthatactasa“jackofalltrades”butmasterofnoneisnotanattractiveoption.Instead,enterprisesareexploringadaptiveapplications–thatperformasingletaskbutcanuseAItoaddintelligencebasedonuserprofiles,enterprisedata,andreal-timeeventsandsituations.
CIOSURVEY3
PARTONE:THEDIGITALMODERNIZATIONLANDSCAPE
Onaverage,enterprisesspent$28milliononITmodernizationin2023–10%less
thantheypredictedtheywouldspendondigitaltransformationinlastyear’ssurvey.However,thelong-termoutlookispositive.Investmentispredictedtoriseby27%,to$35.5million,in2024–thesinglehighestyear-on-yearincreaserecorded(Figure1).
Figure1
$28M
averagespendonITmodernizationin2023
$35.5M
averagepredictedspend
onITmodernization
in2024
27%
year-on-yearriseinITmodernizationspend
Thispositivityextendstoorganizations’progresstowardmeetingtheirIT
modernizationgoals.Overall,fewerITdepartmentsarebehindintheirexpected
progressthaninlastyear’ssurvey,andmoreareaheadofprogressorhavealreadycompletedtheirgoals(Figure2).
Figure2:ChartofprogresstowardITmodernizationgoals
44%
organizationsbehindexpectedprogress–8%improvement
24%
organizationsaheadofexpectedprogress–9%improvement
Whiletherearepositivesigns,enterprisesarestillfacingchallenges.Every
singleenterprisehasbeenpreventedfrompursuinganewdigitalserviceor
otherITmodernizationprojectbecauseofissueswithtechnology,resourcesor
organizationalbuy-in.Similarly,everyenterprisehashadanactivedigitalprojectfail,sufferasignificantdelayorbescaledbackforsimilarissues–representingonaverage$4millioninwastedspending(Figure3).
Figure3
$4M
averagespendonfailed,delayedand/orscaledbackprojects
14.54%
proportionofITmodernizationbudgetspent
CIOSURVEY4
Therearemanysimilaritiesinissuesthatcauseprojectstofail,orpreventthem
frombeingstartedinthefirstplace.Forinstance,relianceonlegacytechnology
thatcannotmeetnewrequirementsisthemostcommonreasonforeitherblockinganewprojectorforanongoingprojectsuffering.Andperceptionthattheriskof
failureistoohighwilloftencauseorganizationstoturndownorabandonprojects.However,therearealsocontrasts:alackofbuy-inorsupportfromtheC-suiteis
morelikelytoderailanexistingproject,whereasalackofsupportacrossthewholeorganizationismorelikelytoblockaprojectfromeverhappening.Theinabilitytosecurebudgetsorcontrolspendingisagreaterissuewhenbeginningaproject,andalackofskillsisanissuewhenattemptingtodeliveradigitalproject(Figure4).
Figure4:Issuesaffectingdigitalprojects
Issuespreventingnewdigitalprojects
Issuesaffectingactivedigitalprojects
Relianceonalegacytechnologythatcouldnotmeetthenew
digitalrequirements
Perceptionthattheriskoffailurewasorhadbecometoohigh
Problemsaccessingor
managingtherequireddata
Inabilitytosecurethenecessarybudgetorstaywithinbudget
Lackofbuy-inorsupportfromacrosstheorganization
Lackofresources/funds
Inabilityofourdevelopmentteamtomeetthegoalssetforthem
Lackofknowledgeofavailabletechnologies
Thecomplexityofimplementingtechnologies
Lackofskillstodeliverthe
digitalproject
Lackofbuy-inorsupportfromtheC-suite
42%
39%
36%
33%
30%
28%
26%
23%
20%
17%
14%
Relianceonalegacytechnologythatcouldnotmeetthenew
digitalrequirements
Perceptionthattheriskof
failurewasorhadbecometoohigh
Inabilityofourdevelopmentteamtomeetthegoalssetforthem
Lackofresources/funds
Lackofknowledgeofavailabletechnologies
Lackofskillstodeliverthedigitalproject
Lackofbuy-inorsupportfromtheC-suite
Problemsaccessingor
managingtherequireddata
Lackofbuy-inorsupportfromacrosstheorganization
Thecomplexityof
implementingtechnologies
Inabilitytosecurethe
necessarybudgetorstay
withinbudget
41%
37%
35%
33%
30%
27%
24%
24%
19%
16%
14%
CIOSURVEY5
Figure5
Ultimately,inanincreasinglycompetitiveenvironment,
18
weeksaverage
delaysuffered
byenterprises
perhapsthemostseriousconsequencefor
enterprisesislosingtime.63%oforganizationshavesuffereddelayslongerthanthreemonthsbecauseofITmodernizationissues.Addressingissuesand
reducingthesedelaysshouldbeapriority(Figure5).
Thereisaclearincentivetoreducethesedelays.
Businessesasawhole,andITteamsinparticular,are
underpressuretoincreaseproductivityanddomorewithless.Thisisnotanisolated
issue:theconsensusisthattheproductivitycrisisisacrossentireindustries.Atthe
sametime,solvingtheissueseemsimpossibleformany–withtheinevitablepressureonITteamscontributingtoworsenedmentalhealth.Withenterprisesneedingto
increaseproductivitybymorethanathirdeachyearjusttoremaincompetitive,ITneedsanewanswer(Figure6).AndAImaybeabletoprovidethis.
Figure6:Theproductivitychallenge
33.37%
amountenterprisesneedto
increaseproductivityeachyear
toremaincompetitive
66%
ofITleadersare
concernedthat
increasedproductivity
demandswillhavea
detrimentaleffecton
teams’physicaland
mentalhealth
62%
ofenterprises’
industriesundergoing
productivitycrises,
withorganizationsand
employeesunableto
meetdemands
57%
ofITleaderssayit’simpossibletomeetproductivity
demandspurelythroughrecruitmentandtraining
59%
oforganizationsfeel
lessproductivethan
ever,evenwhendoing
thesameamount
ofwork
71%
ofITteamswhose
productivitywillbe
outstrippedby
businessexpectations
withinthreeyears
72%
ofITdepartments
areunderincreasing
pressuretodomore
withless
65%
ofbusinessesneed
todomorewith
lesstoremain
competitive
CIOSURVEY6
PARTTWO:THEARTIFICIALINTELLIGENCEAGE
AI’sabilitytosupportmoreaccurate,intelligentautomationisamajorattractionforenterpriseslookingtoaddresstheirproductivitycrises.However,itspotentialstretchesmuchfurtherthanthis,andorganizationsareinvestingappropriately.93%ofenterprisesareinvestinginGenAI,spendingonaverage10.55%oftheirITmodernizationbudgetsonthetechnology.Thissuggeststhatenterprisesarestillgettingtogripswiththetechnology,andweexpectthistoincreaseinthecomingyears.Overall,AIaccountsforalmostone-thirdofenterprises’ITmodernizationinvestmentsin2023and2024(Figure7).
Figure7
proportionofITmodernizationinvestmentinGenAI2023-24
10.55%
TotalGenAISpend
2023-2024
predictedGenAIspend2023-24
proportionofITmodernizationinvestmentinallAI2023-24
33.25%
TotalAISpend
2023-2024
predictedtotalAIspend2023-24
$21.1M
$6.7M
Perhapsunsurprisingly,thishasbeenreflectedinenterprises’changingprioritiesfordigitalprojects.Byfarthemostcommonchangeindigitalprojectsinthelast12monthsisbecomingmorefocusedontakingadvantageofbreakouttechnologies–suchasGenAI(Figure8).
Figure8:Mostcommonchangesindigitalprojects
Becomemorefocusedontakingadvantageofbreakouttechnologies(e.g.,generativeAI)
Becomemoreambitiousinscopeandbudget
Becomemorereactivetoexternalfactors(suchastheeconomy)
Becomemorecustomerexperiencefocused
Becomemoretargetedonspecificbusinessoutcomes
Becomebusiness-wideinitiatives
Becomemorecreativeinscope
54%
42%
41%
40%
37%
34%
26%
CIOSURVEY7
With47%ofITdecisionmakerssayingtheywillstruggletosecurecorporatefinanceorundergoasuccessfulIPO,and42%sayingtheywilllosevaluablestafftomore
innovativecompetitors,iftheydonotsuccessfullydigitallyinnovate–e.g.,bytakingadvantageofGenAI–itisagainunsurprisingthat98%ofrespondentshavespecificGenAIgoalsfor2024(Figure9).
Figure9:Consequencesoffailingtodigitallyinnovate
StruggletosecurecorporatefinanceorundergoasuccessfulIPO
Losevaluablestaffinotherareasofthebusinesstomoreinnovativecompetitors
LosevaluableITstafftomoreinnovativecompetitors
Becomelessrelevantinthemarket
Gooutofbusinessorbeabsorbedbyacompetitorinthenextthreeyears
Losemyjob
47%
42%
37%
32%
23%
10%
RespondentswerealsoclearonthepositivereasonstoinvestinGenAI.Productivitywasacleargoal–fromrapidlyprototypingandtestingnewideas,tocapitalizingonnewbusinesstrendsmorequickly,tomakingspecificemployeessuchasdevelopersmoreeffective(Figure10).
Figure10:TopreasonsforinvestinginGenAI
Rapidprototypingandtestingofnewideas–e.g.,forbusinessstrategy,marketingandsalesmaterials,productdesigns
Makingemployeesinotherbusinessunitsmoreefficientbyperformingmanualtasksforthem
Identifyingandcombatingrapidlyevolvingsecuritythreats
Identifyingnewbusinesstrendsandcapitalizingonthemquickly
IncreasingdeveloperproductivitythroughcodingassistancelikeCopilot
Improvingcustomerexperiencestomeetorexceedexpectations
Maintainingparitywithcompetitorswhohaveinvestedorare
investinginGenAI
40%
39%
38%
37%
35%
35%
33%
CIOSURVEY8
ThereisaclearincentiveforenterprisestoinvestinAI,andhaveseenthatAIis
alreadyresponsibleforalargeproportionofITmodernizationspending.However,overthenext12months,investmentseemssettogrowsteadilybutnotsignificantly.Atthesametime,investmentinthoseareasthatwillbecrucialtosupportingfurtherAIgrowth–suchasedgecomputing,ITinfrastructureanddatamanagement–issettogrowbysimilarproportions.Thissuggestsameasuredapproachbutalsoraisesthequestionofwhethereachoftheseinvestmentswillbeenough(Figure11).
Figure11:PlannedinvestmentinAIandrelatedtechnologiesoverthenext12months
+4.71%
ITInfrastructure
+4.25%
GenAIapplicationsdevelopedin-house
+3.5%
third-partyGenAI
applicationsfrom
vendorsor
serviceproviders
+4.70%
security
+4.19%
in-houseapplications
usingGenAIand/or
predictiveAIto
adaptandperform
aspecificfunction
moreeffectively
+3.49%
edgecomputing
+4.26%
datamanagement
+3.79%
otherAIapplications(e.g.,machinelearning)
+3.36%
recruitingandtrainingdevelopers
OnepotentialconcernwithAIisthatinrushingtoembracethenewtechnology,
enterpriseswillhavetoreduceinvestmentinothercriticalfunctions.ThegoodnewsisthatmostorganizationshavebeenabletobalancethebooksandmeetGenAI
goalswithoutreducinginvestmentelsewhere.However,26%ofenterpriseshavehadtodivertspendingfromotherareas–mostoftenITsupportandmaintenance,andsecurity.Withoutcarefulplanning,thiscreatestheriskthat,intheracetoadoptnewtechnology,enterprisescouldexposethemselvestoincreasedsecurityrisks,less
reliableITorinfrastructurethatdoesn’tmeettheorganization’sneeds(Figure12).
CIOSURVEY9
Figure12:Balancingthebooks?
26%
divertedplannedITspending
fromotherareastomeet
GenAIobjectives
12%
divertedspending
fromITsupport
andmaintenance
10%
divertedspendingfromsecurity
9%
divertedspendingfrominfrastructure
7%
divertedspendingfromotherbusinesssoftware
6%
divertedspendingfromnetworking
5%
divertedspendingfromrecruitmentandtraining
PARTTHREE:PREPARINGFORTHEAGEOFAI
TheracetounderstandanduseAIisnotlimitedtotheITdepartment.Across
thebusiness,employeesareusingGenAIapplicationsthatareeitherdevelopedin-houseorprovidedbyathird-partyvendororserviceprovider(Figure13).ThechallengewillbeensuringthatallpartsofthebusinesscanuseAIeffectively,
intelligentlyandsafely.
Figure13
35.84%
percentageofthe
averageenterprise
usingin-house
GenAIapplications
40.86%
percentageof
theaverageenterprise
usingthird-party
GenAIapplications
64%
ITdecisionmakers
whobelievethe
majorityof
organizationshave
rushedtoadopt
GenAIwithoutfully
understandingwhat
theyneedtodoto
useiteffectively
andsafely
CIOSURVEY10
OneriskofAIuseexpandingbeyondtheITteamisthatnon-specialistusersmaynotbepreparedforthechallengesAIcancreate.Evenlookingpurelywithinthe
ITteam,100%ofrespondentssaidtheirdevelopmentteamhadencountered
issueswhenusingGenAItoolstosupporttheirworkcreatingnewapplications
(Figure14).Foranexperienceduser,GenAIaccessingorsharingproprietarydata,orproducing“hallucinations”insteadofanaccurateconclusion,mightbeexpected,andsosomethingtheuserisalertfor.However,tosuccessfullyexpandAIacross
theorganization,enterpriseswillneedtoensuretheyareusingtherighttoolsandtechniquessuchasretrieval-augmentedgeneration(RAG)tominimizehallucinationsoraccessingsensitiveinformation.
Figure14:AIchallengesencounteredbydevelopmentteams
GenAIsharinganotherorganization'sIPorotherproprietaryinformationaspartofananswer
GenAIusingoraccessingproprietarydatafromyourorganization
AI“hallucinations”–i.e.,AIpresentingafalseconclusionasthetruth,thatdevelopersactedonbeforetheyrecognizeditassuch
AI“hallucinations”–i.e.,AIpresentingafalseconclusionasthetruth,thatdeveloperscouldidentifyandavoidactingon
GenAIoperatinginawaythatworkscontrarytoestablishedbestpractices
LosingtheefficiencybenefitsofGenAIthroughhavingtodouble-checkitsconclusions
43%
40%
37%
32%
28%
23%
ITdecisionmakersrecognizethattheyfacebothculturalandtechnicalchallengesinmakingsuretheirorganizationcanuseGenAIsafelyandeffectively(Figure15).Ontheculturalside,CIOsneedtosetrealisticgoalsandexpectationsofwhatthetechnologycando,toensureprojectshavethegreatestchanceofsuccessandbuy-in.Atthesametime,theyneedtobeabletoshareandaccessdataquicklyenoughtoensurepeakperformance–asanylapsewillmeanAIisnolonger“realtime,”
andsoincreasestheriskofhallucinationsor,atbest,providingoutdatedadvice.Asaresult,enterprisesneedtoensuretheyhavetherightarchitectureinplacetosupportGenAI;togetherwitheducationandtrainingforendusers,andcontrolstoensuredatacannotbelostormisused.
CIOSURVEY11
Figure15:Top9challengestoachievingeffective,safeuseofGenAI
1.Settingrealisticgoalsandexpectationsofwhatthetechnologycando2.Sharingandaccessingdataquicklyenoughtoensurepeakperformance3.PreventinginadvertentIPtheftorsecurityissues
4.MonitoringandmanagingGenAIapplicationuse
5.Ensuringaccesstocomputingandstorageresources
6.MaintainingandimprovingonGenAIcapabilitythroughinvestmentwithout
reducinginvestmentinotherareas
7.Effectivedatamanagement
8.Ensuringarchitectureishigh-performanceandflexibleenoughtosupportGenAI9.Trainingendusers
Onthetechnicalside,therightdatastrategyandtherightarchitecturewillbe
criticaltoenablingGenAI.Forinstance,withoutcompletecontroloverwheredataisstored,whohasaccessandhowitisused,enterprisescannotguaranteesafe
GenAI.Andwithouttheabilitytoaccess,shareandusedatawithminimallatency,organizationswillnotmeetGenAI’sperformancedemands.Atpresent,atleast54%ofenterprisesdonothavealltheelementsinplacetoensureanall-encompassingdatastrategythatisbuiltforGenAI(Figure16).
Figure16:TheessentialelementsofaGenAIdatastrategy
59%
ITdecisionmakersworriedtheirorganizations’abilitytomanagedatawillnotmeetGenAI
demandswithoutsignificantinvestment
Controloverwheredataisstored,whohasaccessandhowitisusedsodatacannotbeaccessedorusedinappropriately.
46%ofenterpriseshavecompletecontroloverdata
storage,accessandusage
Accessing,sharingandusingdatawithminimallatencyisessentialtoenablingGenAItooperateinrealtime.
41%ofenterpriseshavetheabilitytoaccess,shareandusedatawithminimallatency
Havingtoolstopreventthesharingofproprietarydataoutsidethe
organizationreducestheriskthatGenAIwillinadvertentlysharesensitivedataorIPs.
37%ofenterpriseshavetoolspreventingproprietarydatafrombeingsharedoutsidetheorganization
CIOSURVEY12
TopreventAIapplicationsfromaccessingandbecomingconfusedby
multipleversionsofdata–increasingtheriskofhallucinations–enterprisesshouldconsolidatetheirdatabasearchitecture.
31%ofenterpriseshaveconsolidateddatabase
architecturesoapplicationscannotaccessmultiple
versionsofdata
Developersshouldbegivenclear,thoroughbestpracticesthatallowthemtousedatasafelyandeffectively.
30%ofenterpriseshaveclearandthorough
bestpractices
Managingunstructureddataathighspeedusingahigh-performancedatabaseiskeytoenablingreal-timeGenAIthatisnotlimitedinhowitqueriesdata.
25%ofenterpriseshaveahigh-performancedatabasethatcanmanageunstructureddataathighspeed
GenAIwilloftenrequiredifferentlevelsofdataprocessing.Theabilitytoscalethistomeetimmediateneedswithoutattractingunnecessaryspendingisvitaltomaximizingperformancewhilecontrollingbudgets.
23%ofenterpriseshavetheabilitytoscaledata
processingtomeetimmediateneedswithout
unnecessaryspending
GenAIperformanceisgreatlyimprovedifanorganizationcanusehigh-dimensionalvectordata.
18%ofenterpriseshaveavectordatabasethatcanstore,manageandindexvectordataefficiently
GenAIreliesonanalyticalcapabilities.Thefasteritcananalyzedata,and
themoreitcananalyzeatonetime,theclosertorealtimeitwillbe,andthemoreaccurateitsconclusions.
17%ofenterpriseshavetheabilitytoperformreal-timeanalyticsonlargeamountsofdata
RespondentsalsorecognizethattofullymakeuseofGenAI,theywillneedto
meetitsconsiderabledemandsforcomputingpower.Ensuringthereissufficient
computingpoweranddatacenterinfrastructureinplacetosupportGenAIisa
concernforthemajorityofrespondents.Thisisnotonlyafinancialandperformanceissue.Asorganizationsbecomemoreawareofenvironmentalissues,thereisa
veryrealneedtominimizetheenergyandwaterinfrastructurepoweringGenAI.
CIOSURVEY13
Ultimately,reviewingtheirexistingarchitectureandensuringitismodernizedinordertomeetGenAI’sneedswillbeapriorityforenterprises.Otherwise,theywillfindtheirarchitectureisnotfitforpurposewithintwoyears(Figure17).
Figure17
60%
ITdecisionmakers
worriedabout
ensuringtheir
organization
hassufficient
computepower
anddatacenter
infrastructureto
supportGenAI
61%
ITdecisionmakers
whoseorganizations’
commitmenttoCSR
andenvironmental
initiativesmeanthey
cannotfullyadopt
GenAIunlessbased
onmoreefficient
infrastructure
19
monthstimeuntil
enterprisesbelieve
theirITarchitecture
willbeunableto
supportGenAI
Thisisnotinitselfnegativenews.Instead,themajorityofrespondentsdon’tonlyrecognizethechallengestheyface.Theyalsorecognizethesolutionstothese
challenges,andinseveralcasesarealreadytakingaction(Figure18).
Figure18:TakingactiononAI
OneofthegreatestassetswhencreatingnewGenAItoolsisGenAIitself.AI-poweredcodingtoolscanacceleratethedevelopmentprocess:guidingdevelopersthroughbestpracticesandhelpingtestanditeratecodeto
createworkingapplicationsmorequickly.
73%ofenterprisesareincreasinginvestmentinAItoolstohelpdevelopersworkmoreeffectivelyandcreatenewGenAIapplicationsfaster
AcrucialassetincreatingandsupportingGenAIapplicationsisthedatabase.Traditionally,enterpriseshaveusedmultipledatabasestoperformdifferentfunctions–withlegacydatabasesperforming
transactionalinquiriesoperatingalongnewerNoSQLdatabasessupportingmorecomplexapplications.Theconcernwithupdatingdatabasesto
supportGenAIisthatthiswouldneedtohappenacrossmultipledatabasesandbeprohibitivelyexpensive.However,moderndatabasesthatsupportmultipledataaccesspatternsincludingvectorsearchandhigh-speed
analysisaremorethancapableoffulfillingmultiplefunctionsatonce,fromtransactionalinquiriestocomplexGenAIcalculations.
66%ofenterpriseswanttoupdatedatabasestobettersupportin-houseGenAIapplicationsbutbelievethey
wouldneedtoinvestinmultipledatabasestogetallnecessarycapabilities
CIOSURVEY14
Accessingandsharingdataathighspeedandwithminimallatencydoes
notrelysolelyoncomputepower.Instead,enterprisescanarchitecttheirenvironmentstomaximizetheirpotential.Forinstance,edgecomputing
platformsnowhavethecomputepowertosupportGenAIapplications.
Performingmorecalculationsattheedgeinsteadofrelyingoncentral
serverswillgreatlyimprovespeed–aswellasreducethecostsandsecurityrisksoftransmittingdatabackandforth.
65%ofenterprisessayedgecomputingwillbecriticalforenablingnewAIapplications
PARTFOUR:THEDAWNOFADAPTIVEAPPLICATIONS
AnequallyimportantquestionforGenAIisnotonlyhowenterpriseswillenable
it,butwhattheywillcreate.Inthepopularimagination,it’seasytoseeGenAI
applicationsascompletelyopen-ended“jacksofalltrades”thatcanusetextor
otherinterfacestoofferanythingtheenduserwants.Thequestioniswhetherthisiswhatmanyuserstrulywantorneed.
Thereisnoargumentthatenterprisescannotstandstill.Failuretodeliverneworupdatedend-userexperienceswillresultindissatisfiedcustomersoremployees,andarealriskthattheenterprisewilllosebusinessorstafftotheircompetitors.
Inevitably,therewillcomeapointwhereanorganization’sexistingapplicationswillnotbefitforpurpose(Figure19).
Figure19
61%
enterprisesunder
pressuretocontinually
deliverimproved
experiencesforend
users
46%
enterpriseswho
willlosebusiness
tocompetitors
ifapplications
nolongermeet
expectations
18
monthstimeafter
whichenterprises’
customer-facing
applicationswillno
longermeetend-user
expectations
20
monthstimeafter
whichenterprises’
employee-facing
applicationswillno
longermeetend-user
expectations
41%
enterprisesfacinga
realriskofgoingout
ofbusinessinthree
yearsifapplications
nolongermeet
expectations
35%
enterpriseswho
willlosestaff
tocompetitors
ifapplications
nolongermeet
expectations
CIOSURVEY15
Tomeetexpectations,enterprisesneedtounderstandwhatmakesa“good”end-userexperience.However,oftenneitheratightlycontrolledapplicationthatonlypermitsalimitednumberoffunctionsnoracompletelyopenGenAI-powered
applicationwillmeetendusers’orbu
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房裝修項(xiàng)目環(huán)保節(jié)能技術(shù)引進(jìn)與應(yīng)用合同4篇
- 二零二五版化工材料采購(gòu)與綠色供應(yīng)鏈協(xié)議3篇
- 二零二五年度蟲(chóng)草進(jìn)口與出口貿(mào)易合同標(biāo)準(zhǔn)3篇
- 2025年度新能源電動(dòng)車(chē)制造廠房租賃合同模板2篇
- 2025年私立學(xué)校新生試讀協(xié)議書(shū)(藝術(shù)特長(zhǎng)生培養(yǎng)計(jì)劃)標(biāo)準(zhǔn)文本2篇
- 二零二五版樓盤(pán)銷售代理合同大曰金地產(chǎn)品牌推廣服務(wù)合同3篇
- 二零二五年度錨桿錨固施工材料采購(gòu)勞務(wù)協(xié)議4篇
- 2025年度廠房抵押借款合同借款人信用評(píng)級(jí)約定4篇
- 2025年新型環(huán)保材料廠房水電安裝服務(wù)合同4篇
- 遺傳學(xué)課程標(biāo)準(zhǔn)課程設(shè)計(jì)
- 【傳媒大學(xué)】2024年新?tīng)I(yíng)銷
- 乳腺癌的綜合治療及進(jìn)展
- 【大學(xué)課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025屆廣東省佛山市高三上學(xué)期普通高中教學(xué)質(zhì)量檢測(cè)(一模)英語(yǔ)試卷(無(wú)答案)
- 自身免疫性腦炎課件
- 人力資源管理各崗位工作職責(zé)
- 信陽(yáng)農(nóng)林學(xué)院《新媒體傳播學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024建筑公司年終工作總結(jié)(32篇)
- 信息安全意識(shí)培訓(xùn)課件
- 2024年項(xiàng)目投資計(jì)劃書(shū)(三篇)
- 配電安規(guī)課件
評(píng)論
0/150
提交評(píng)論