版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省廣州市增城區(qū)鄭中均中學數學高一下期末調研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則().A. B. C. D.2.若是兩條不同的直線,是三個不同的平面,則下列結論中正確的是()A.若,則 B.若,則C.若,則 D.若,則3.若不等式的解集為空集,則實數a的取值范圍是()A. B. C. D.4.已知為等差數列,其前項和為,若,,則公差等于()A. B. C. D.5.意大利著名數學家斐波那契在研究兔子繁殖問題時,發(fā)現有這樣一列數:1,1,2,3,5,8,13,21,….該數列的特點是:前兩個數都是1,從第三個數起,每一個數都等于它前面兩個數的和,人們把這樣的一列數組成的數列稱為“斐波那契數列”,則().A.1 B.2019 C. D.6.某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)獎金投入,若該公司年全年投入研發(fā)獎金萬元,在此基礎上,每年投入的研發(fā)獎金比上一年增長,則該公司全年投入的研發(fā)獎金開始超過萬元的年份是()(參考數據:,,)A.年 B.年 C.年 D.年7.若滿足,且的最小值為,則實數的值為()A. B. C. D.8.下列命題中不正確的是()A.平面∥平面,一條直線平行于平面,則一定平行于平面B.平面∥平面,則內的任意一條直線都平行于平面C.一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行D.分別在兩個平行平面內的兩條直線只能是平行直線或異面直線9.向正方形ABCD內任投一點P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.10.已知隨機變量服從正態(tài)分布,且,,則()A.0.2 B.0.3 C.0.7 D.0.8二、填空題:本大題共6小題,每小題5分,共30分。11.把一枚質地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.12.已知,且,則_____.13.若銳角滿足則______.14.在平面直角坐標系中,在軸、軸正方向上的投影分別是、,則與同向的單位向量是__________.15.已知中,,且,則面積的最大值為__________.16.P是棱長為4的正方體的棱的中點,沿正方體表面從點A到點P的最短路程是_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在中,為邊上一點,,若.(1)若是銳角三角形,,求角的大小;(2)若銳角三角形,求的取值范圍.18.(1)解方程:;(2)有四個數,其中前三個數成等差數列,后三個數成等比數列,且第一個數與第四個數的和是16,第二個數與第三個數的和是12,求這四個數;19.已知定義域為的函數在上有最大值1,設.(1)求的值;(2)若不等式在上恒成立,求實數的取值范圍;(3)若函數有三個不同的零點,求實數的取值范圍(為自然對數的底數).20.已知直線截圓所得的弦長為.直線的方程為.(1)求圓的方程;(2)若直線過定點,點在圓上,且,為線段的中點,求點的軌跡方程.21.設數列的前項和為,若,且成等差數列.(1)求數列的通項公式;(2)若的,求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
.所以選A.【點睛】本題考查了二倍角及同角正余弦的差與積的關系,屬于基礎題.2、C【解析】
試題分析:兩個平面垂直,一個平面內的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關系.【詳解】請在此輸入詳解!3、D【解析】
對分兩種情況討論分析得解.【詳解】當時,不等式為,所以滿足題意;當時,,綜合得.故選:D【點睛】本題主要考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平,屬于基礎題.4、C【解析】
由題意可得,又,所以,故選C.【點睛】本題考查兩個常見變形公式和.5、A【解析】
計算部分數值,歸納得到,計算得到答案.【詳解】;;;…歸納總結:故故選:【點睛】本題考查了數列的歸納推理,意在考查學生的推理能力.6、B【解析】試題分析:設從2015年開始第年該公司全年投入的研發(fā)資金開始超過200萬元,由已知得,兩邊取常用對數得,故從2019年開始,該公司全年投入的研發(fā)資金開始超過200萬元,故選B.【考點】增長率問題,常用對數的應用【名師點睛】本題考查等比數列的實際應用.在實際問題中平均增長率問題可以看作等比數列的應用,解題時要注意把哪個數作為數列的首項,然后根據等比數列的通項公式寫出通項,列出不等式或方程就可求解.7、B【解析】
首先畫出滿足條件的平面區(qū)域,然后根據目標函數取最小值找出最優(yōu)解,把最優(yōu)解點代入目標函數即可求出的值.【詳解】畫出滿足條件的平面區(qū)域,如圖所示:,由,解得:,由得:,顯然直線過時,z最小,∴,解得:,故選B.【點睛】本題主要考查簡單的線性規(guī)劃,已知目標函數最值求參數的問題,屬于??碱}型.8、A【解析】
逐一考查所給的選項是否正確即可.【詳解】逐一考查所給的選項:A.平面∥平面,一條直線平行于平面,可能a在平面內或與相交,不一定平行于平面,題中說法錯誤;B.由面面平行的定義可知:若平面∥平面,則內的任意一條直線都平行于平面,題中說法正確;C.由面面平行的判定定理可得:若一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行,題中說法正確;D.分別在兩個平行平面內的兩條直線只能是平行直線或異面直線,不可能相交,題中說法正確.本題選擇A選項.【點睛】本題考查了空間幾何體的線面位置關系判定與證明:(1)對于異面直線的判定要熟記異面直線的概念:把既不平行也不相交的兩條直線稱為異面直線;(2)對于線面位置關系的判定中,熟記線面平行與垂直、面面平行與垂直的定理是關鍵.9、C【解析】
由題意,求出滿足題意的點所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設正方形的邊長為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點睛】本題考查幾何概型的概率求法,解題的關鍵是明確概率模型,屬于基礎題.10、B【解析】隨機變量服從正態(tài)分布,所以曲線關于對稱,且,由,可知,所以,故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
把一枚質地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個,由此能求出兩次都是正面向上的概率.【詳解】把一枚質地均勻的硬幣先后拋擲兩次,基本事件有4個,分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點睛】本題考查古典概型的概率計算,求解時注意列舉法的應用,即列舉出所有等可能結果.12、【解析】
首先根據已知條件求得的值,平方后利用同角三角函數的基本關系式求得的值.【詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【點睛】本小題主要考查同角三角函數的基本關系式,考查兩角和的正弦公式,考查化歸與轉化的數學思想方法,屬于基礎題.13、【解析】
由已知利用同角三角函數基本關系式可求,的值,利用兩角差的余弦公式即可計算得解.【詳解】、為銳角,,,,,,.故答案為:.【點睛】本題主要考查了同角三角函數基本關系式,兩角差的余弦函數公式在三角函數化簡求值中的應用,屬于基礎題.14、【解析】
根據題意得出,再利用單位向量的定義即可求解.【詳解】由在軸、軸正方向上的投影分別是、,可得,所以與同向的單位向量為,故答案為:【點睛】本題考查了向量的坐標表示以及單位向量的定義,屬于基礎題.15、【解析】
先利用正弦定理求出c=2,分析得到當點在的垂直平分線上時,邊上的高最大,的面積最大,利用余弦定理求出,最后求面積的最大值.【詳解】由可得,由正弦定理,得,故,當點在的垂直平分線上時,邊上的高最大,的面積最大,此時.由余弦定理知,,即,故面積的最大值為.故答案為【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.16、【解析】
從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對稱的,所得結果一樣,另外一種是以側棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對稱,求得結果一樣,故解題時選擇以BC為軸展開與BB1為軸展開兩種方式驗證即可【詳解】由題意,若以BC為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為4,6,故兩點之間的距離是若以BB1為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為2,8,故兩點之間的距離是故沿正方體表面從點A到點P的最短路程是cm故答案為【點睛】本題考查多面體和旋轉體表面上的最短距離問題,求解的關鍵是能夠根據題意把求幾何體表面上兩點距離問題轉移到平面中來求三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用正弦定理,可得,然后利用,可得結果.(2)【詳解】在中,,又,,所以,又是銳角三角形所以,所以又,則,所以故(2)由,所以,即由銳角三角形,所以所以,所以故,則所以【點睛】本題主要考查正弦定理邊角互換,重點掌握公式,難點在于對角度范圍求取,屬中檔題.18、(1)或。(2)、、、,或、、、【解析】
(1)由正弦的倍角公式,化簡得,得到解得或,結合正弦和余弦的性質,即可求解;(2)設這四個數分別為,得到,且,即可求解,得到答案.【詳解】(1)由題意,方程,可得,即,解得或,所以或.(2)由題意,設這四個數分別為,可得,且,解得:或,所以這四個數為:、、、,或、、、.【點睛】本題主要考查了三角方程的求解,以及等差、等比中項的應用,其中解答中熟記三角恒等變換的公式,以及等差、等比數列中項公式,準確計算是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.19、(1)0;(2);(3)【解析】
(1)結合二次函數的性質可判斷g(x)在[1,2]上的單調性,結合已知函數的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,結合對數與二次函數的性質可求;(3)原方程可化為|ex﹣1|2﹣(3k+2)|ex﹣1|+(2k+1)=0,利用換元q=|ex﹣1|,結合二次函數的實根分布即可求解.【詳解】(1)因為在上是增函數,所以,解得.(2)由(1)可得:所以不等式在上恒成立.等價于在上恒成立令,因為,所以則有在恒成立令,,則所以,即,所以實數的取值范圍為.(3)因為令,由題意可知令,則函數有三個不同的零點等價于在有兩個零點,當,此時方程,此時關于方程有三個零點,符合題意;當記為,,且,,所以,解得綜上實數的取值范圍.【點睛】本題主要考查了二次函數的單調性的應用,不等式中的恒成立問題與最值的相互轉化,二次函數的實根分布問題等知識的綜合應用,是中檔題20、(1);(2).【解析】
(1)利用點到直線的距離公式得到圓心到直線的距離,利用直線截圓得到的弦長公式可得半徑r,從而得到圓的方程;(2)由已知可得直線l1恒過定點P(1,1),設MN的中點Q(x,y),由已知可得,利用兩點間的距離公式化簡可得答案.【詳解】(1)根據題意,圓的圓心為(0,0),半徑為r,則圓心到直線l的距離,若直線截圓所得的弦長為,則有,解可得,則圓的方程為;(2)直線l1的方程為,即,則有,解得,即P的坐標為(1,1),點在圓上,且,為線段的中點,則,設MN的中點為Q(x,y),則,即,化簡可得:即為點Q的軌跡方程.【點睛】本題考查直線與圓的位置關系,考查直線被圓截得的弦長公式的應用,考查直線恒過定點問題和軌跡問題,屬于中檔題.21、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024旅游景點開發(fā)與保護合同
- 2024某保險公司與某企業(yè)之間的2024年度員工團險合同
- 2025年度智能物流配送中心承包合同范本2篇
- 2024年雇傭責任免除協議版B版
- 不動產企業(yè)股權轉讓細化合同2024版版B版
- 2024年某商業(yè)大廈建筑模板專業(yè)分包合同一
- 2025年度高端教育機構合作辦學合同3篇 - 副本
- 2024版房屋租賃合同(商業(yè)用途)
- 2025年度太陽能玻璃組件供應與安裝一體化服務合同2篇
- 2025年生態(tài)葡萄種植基地采購合同示范文本3篇
- 眼科護理的國內外發(fā)展動態(tài)和趨勢
- 創(chuàng)傷中心工作計劃范文
- 工作頁(計算機組裝與維護-家用電腦組裝)
- 浙江省杭州市2023-2024學年四年級上學期科學高頻易錯期末考前卷(教科版)
- 汽車產量統(tǒng)計研究報告
- 醫(yī)藥倉儲部人員崗位職責及工作內容培訓課件
- 人員密集場所安全常識
- 分裂癥的非藥物治療
- 簡單咨詢費合同范本英文版
- 03 35KV無功補償裝置安裝施工方案
- 鄉(xiāng)鎮(zhèn)質量強縣工作總結
評論
0/150
提交評論