陜西省寶雞市金臺中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
陜西省寶雞市金臺中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
陜西省寶雞市金臺中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
陜西省寶雞市金臺中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
陜西省寶雞市金臺中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省寶雞市金臺中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.().A. B. C. D.3.已知數(shù)列的前項和,那么()A.此數(shù)列一定是等差數(shù)列 B.此數(shù)列一定是等比數(shù)列C.此數(shù)列不是等差數(shù)列,就是等比數(shù)列 D.以上說法都不正確4.在中,,點P是直線BN上一點,若,則實數(shù)m的值是()A.2 B. C. D.5.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在中,,則是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形7.在正項等比數(shù)列中,,數(shù)列的前項之和為()A. B. C. D.8.若過點,的直線與直線平行,則的值為()A.1 B.4 C.1或3 D.1或49.甲、乙兩位同學(xué)在高一年級的5次考試中,數(shù)學(xué)成績統(tǒng)計如莖葉圖所示,若甲、乙兩人的平均成績分別是,則下列敘述正確的是()A.,乙比甲成績穩(wěn)定B.,甲比乙成績穩(wěn)定C.,乙比甲成績穩(wěn)定D.,甲比乙成績穩(wěn)定10.設(shè)a,b,c為的內(nèi)角所對的邊,若,且,那么外接圓的半徑為A.1 B. C.2 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,若與共線,則實數(shù)________.12.省農(nóng)科站要檢測某品牌種子的發(fā)芽率,計劃采用隨機(jī)數(shù)表法從該品牌粒種子中抽取粒進(jìn)行檢測,現(xiàn)將這粒種子編號如下,,,,若從隨機(jī)數(shù)表第行第列的數(shù)開始向右讀,則所抽取的第粒種子的編號是.(下表是隨機(jī)數(shù)表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795413.將角度化為弧度:________.14.在棱長均為2的三棱錐中,分別為上的中點,為棱上的動點,則周長的最小值為________.15.若等差數(shù)列和等比數(shù)列滿足,,則_______.16.若點與關(guān)于直線對稱,則的傾斜角為_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知曲線上的任意一點到兩定點、距離之和為,直線交曲線于兩點,為坐標(biāo)原點.(1)求曲線的方程;(2)若不過點且不平行于坐標(biāo)軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;(3)若直線過點,求面積的最大值,以及取最大值時直線的方程.18.已知函數(shù)的圖象關(guān)于直線對稱,且圖象上相鄰兩個最高點的距離為.(1)求與的值;(2)若,求的值.19.已知的三個內(nèi)角,,的對邊分別為,,,函數(shù),且當(dāng)時,取最大值.(1)若關(guān)于的方程,有解,求實數(shù)的取值范圍;(2)若,且,求的面積.20.已知直線:及圓心為的圓:.(1)當(dāng)時,求直線與圓相交所得弦長;(2)若直線與圓相切,求實數(shù)的值.21.已知為坐標(biāo)原點,,,若.(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)當(dāng)時,若方程有根,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

該幾何體由上下兩部分組成的,上面是一個圓錐,下面是一個正方體,由體積公式直接求解.【詳解】該幾何體由上下兩部分組成的,上面是一個圓錐,下面是一個正方體.∴該幾何體的體積V64.故選:B.【點睛】本題考查了正方體與圓錐的組合體的三視圖還原問題及體積計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.2、D【解析】

運用誘導(dǎo)公式進(jìn)行化簡,最后逆用兩角和的正弦公式求值即可.【詳解】,故本題選D.【點睛】本題考查了正弦的誘導(dǎo)公式,考查了逆用兩角和的正弦公式,考查了特殊角的正弦值.3、D【解析】

利用即可求得:,當(dāng)時,或,對賦值2,3,選擇不同的遞推關(guān)系可得數(shù)列:1,3,-3,…,問題得解.【詳解】因為,當(dāng)時,,解得,當(dāng)時,,整理有,,所以或若時,滿足,時,滿足,可得數(shù)列:1,3,-3,…此數(shù)列既不是等差數(shù)列,也不是等比數(shù)列故選D【點睛】本題主要考查利用與的關(guān)系求,以及等差等比數(shù)列的判定.4、B【解析】

根據(jù)向量的加減運算法則,通過,把用和表示出來,即可得到的值.【詳解】在中,,點是直線上一點,所以,又三點共線,所以,即.故選:B.【點睛】本題考查實數(shù)值的求法,解題時要認(rèn)真審題,注意平面向量加法法則的合理運用,屬于基礎(chǔ)題.5、D【解析】

利用復(fù)數(shù)的運算法則、幾何意義即可得出.【詳解】在復(fù)平面內(nèi),復(fù)數(shù)==1﹣i對應(yīng)的點(1,﹣1)位于第四象限.故選D.【點睛】本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.6、D【解析】

先由可得,然后利用與三角函數(shù)的和差公式可推出,從而得到是直角三角形【詳解】因為,所以所以因為所以即所以所以因為,所以因為,所以,即是直角三角形故選:D【點睛】要判斷三角形的形狀,應(yīng)圍繞三角形的邊角關(guān)系進(jìn)行思考,主要有以下兩條途徑:①角化邊:把已知條件轉(zhuǎn)化為只含邊的關(guān)系,通過因式分解、配方等得到邊的對應(yīng)關(guān)系,從而判斷三角形形狀,②邊化角:把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過三角恒等變換,得出內(nèi)角的關(guān)系,從而判斷三角形的形狀.7、B【解析】

根據(jù)等比數(shù)列的性質(zhì),即可解出答案?!驹斀狻抗蔬xB【點睛】本題考查等比數(shù)列的性質(zhì),同底對數(shù)的運算,屬于基礎(chǔ)題。8、A【解析】

首先設(shè)一條與已知直線平行的直線,點,代入直線方程即可求出的值.【詳解】設(shè)與直線平行的直線:,點,代入直線方程,有.故選:A.【點睛】本題考查了利用直線的平行關(guān)系求參數(shù),屬于基礎(chǔ)題.注意直線與直線在時相互平行.9、C【解析】甲的平均成績,甲的成績的方差;乙的平均成績,乙的成績的方差.∴,乙比甲成績穩(wěn)定.故選C.10、A【解析】

由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【詳解】∵,∴,整理得b2+c2-a2=bc,根據(jù)余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故選A【點睛】已知三邊關(guān)系,可轉(zhuǎn)化為接近余弦定理的形式,直接運用余弦定理理解三角形,注意整體代入思想.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)平面向量的共線定理與坐標(biāo)表示,列方程求出x的值.【詳解】向量(3,﹣1),(x,2),若與共線,則3×2﹣(﹣1)?x=0,解得x=﹣1.故答案為﹣1.【點睛】本題考查了平面向量的共線定理與坐標(biāo)表示的應(yīng)用問題,是基礎(chǔ)題.12、1【解析】試題分析:依據(jù)隨機(jī)數(shù)表,抽取的編號依次為785,567,199,1.第四粒編號為1.考點:隨機(jī)數(shù)表.13、【解析】

根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點睛】本題考查角度和弧度的互化公式,屬于基礎(chǔ)題.14、【解析】

易證明中,且周長為,其中為定值,故只需考慮的最小值即可.【詳解】由題,棱長均為2的三棱錐,故該三棱錐的四個面均為正三角形.又因為,故.故.且分別為上的中點,故.故周長為.故只需求的最小值即可.易得當(dāng)時取得最小值為.故周長的最小值為.故答案為:【點睛】本題主要考查了立體幾何中的距離最值問題,需要根據(jù)題意找到定量以及變量的最值情況即可.屬于中檔題.15、【解析】

設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題中條件求出、的值,進(jìn)而求出和的值,由此可得出的值.【詳解】設(shè)等差數(shù)列的公差和等比數(shù)列的公比分別為和,則,求得,,那么,故答案為.【考點】等差數(shù)列和等比數(shù)列【點睛】等差、等比數(shù)列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運算問題轉(zhuǎn)化為解關(guān)于基本量的方程(組)問題,因此可以說數(shù)列中的絕大部分運算題可看作方程應(yīng)用題,所以用方程思想解決數(shù)列問題是一種行之有效的方法.16、【解析】

根據(jù)兩點關(guān)于直線對稱,可知與垂直,利用斜率乘積為可求得,根據(jù)直線傾斜角與斜率的關(guān)系可求得傾斜角.【詳解】由題意知:,即:又本題正確結(jié)果:【點睛】本題考查直線傾斜角的求解,關(guān)鍵是能夠根據(jù)兩點關(guān)于直線對稱的性質(zhì)求得所求直線的斜率,再根據(jù)斜率與傾斜角的關(guān)系求得結(jié)果.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析;(3)或【解析】

(1)利用橢圓的定義可知曲線為的橢圓,直接寫出橢圓的方程.(2)設(shè)直線,設(shè),聯(lián)立直線方程與橢圓方程,通過韋達(dá)定理求解KOM,然后推出直線OM的斜率與的斜率的乘積為定值.(3)設(shè)直線方程是與橢圓方程聯(lián)立,根據(jù)面積公式,代入根與系數(shù)的關(guān)系,利用換元和基本不等式求最值.【詳解】(1)由題意知曲線是以原點為中心,長軸在軸上的橢圓,設(shè)其標(biāo)準(zhǔn)方程為,則有,所以,∴.(2)證明:設(shè)直線的方程為,設(shè)則由可得,即∴,∴,,,∴直線的斜率與的斜率的乘積=為定值(3)點,由可得,,解得∴設(shè)當(dāng)時,取得最大值.此時,即所以直線方程是【點睛】本題考查橢圓定義及方程、韋達(dá)定理的應(yīng)用及三角形面積的范圍等問題,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想,是中檔題.18、(1),;(2)【解析】

(1)根據(jù)最高頂點間的距離求出周期得,根據(jù)對稱軸求出;(2)根據(jù)題意求出,結(jié)合誘導(dǎo)公式及和差公式求解.【詳解】解:(1)因的圖象上相鄰兩個最高點的距離為,∴的最小正周期,從而.又因的圖象關(guān)于直線對稱,∴.∵,∴,此時.(2)由(1)得,∴,由得,∴,∴.【點睛】此題考查根據(jù)三角函數(shù)圖像性質(zhì)求參數(shù)的值,結(jié)合誘導(dǎo)公式和差公式處理三角求值的問題.19、(1);(2).【解析】

(1)利用兩角和差的正弦公式整理可得:,再利用已知可得:(),結(jié)合已知可得:,求得:時,,問題得解.(2)利用正弦定理可得:,結(jié)合可得:,對邊利用余弦定理可得:,結(jié)合已知整理得:,再利用三角形面積公式計算得解.【詳解】解:(1).因為在處取得最大值,所以,,即.因為,所以,所以.因為,所以所以,因為關(guān)于的方程有解,所以的取值范圍為.(2)因為,,由正弦定理,于是.又,所以.由余弦定理得:,整理得:,即,所以,所以.【點睛】本題主要考查了兩角和、差的正弦公式應(yīng)用,還考查了三角函數(shù)的性質(zhì)及方程與函數(shù)的關(guān)系,還考查了正弦定理、余弦定理的應(yīng)用及三角形面積公式,考查計算能力及轉(zhuǎn)化能力,屬于中檔題.20、(1)弦長為4;(1)0【解析】

(1)由得到直線過圓的圓心,可求得弦長即為圓的直徑4;(1)由點到直線的距離等于半徑1,得到關(guān)于的方程,并求出.【詳解】(1)當(dāng)時,直線:,圓:.圓心坐標(biāo)為,半徑為1.圓心在直線上,則直線與圓相交所得弦長為4.(1)由直線與圓相切,則圓心到直線的距離等于半徑,所以,解得:.【點睛】本題考查直線與圓相交、相切兩種位置關(guān)系,求解時注意點到直線距離公式的應(yīng)用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論