2024屆云南省建水縣數(shù)學高一下期末綜合測試模擬試題含解析_第1頁
2024屆云南省建水縣數(shù)學高一下期末綜合測試模擬試題含解析_第2頁
2024屆云南省建水縣數(shù)學高一下期末綜合測試模擬試題含解析_第3頁
2024屆云南省建水縣數(shù)學高一下期末綜合測試模擬試題含解析_第4頁
2024屆云南省建水縣數(shù)學高一下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆云南省建水縣數(shù)學高一下期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若一個正四棱錐的側(cè)棱和底面邊長相等,則該正四棱錐的側(cè)棱和底面所成的角為()A.30° B.45° C.60° D.90°2.已知數(shù)列滿足,,則()A. B. C. D.3.某正弦型函數(shù)的圖像如圖,則該函數(shù)的解析式可以為().A. B.C. D.4.在空間中,給出下列說法:①平行于同一個平面的兩條直線是平行直線;②垂直于同一條直線的兩個平面是平行平面;③若平面內(nèi)有不共線的三點到平面的距離相等,則;④過平面的一條斜線,有且只有一個平面與平面垂直.其中正確的是()A.①③ B.②④ C.①④ D.②③5.如圖,在長方體中,,,,分別是,的中點則異面直線與所成角的余弦值為()A. B. C. D.6.已知函數(shù),此函數(shù)的圖象如圖所示,則點的坐標是()A. B. C. D.7.已知函數(shù)的圖像如圖所示,關(guān)于有以下5個結(jié)論:(1);(2),;(3)將圖像上所有點向右平移個單位得到的圖形所對應(yīng)的函數(shù)是偶函數(shù);(4)對于任意實數(shù)x都有;(5)對于任意實數(shù)x都有;其中所有正確結(jié)論的編號是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)8.已知,若關(guān)于的不等式的解集中的整數(shù)恰有3個,則實數(shù)的取值范圍是()A. B. C. D.9.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”10.已知等比數(shù)列中,,該數(shù)列的公比為A.2 B.-2 C. D.3二、填空題:本大題共6小題,每小題5分,共30分。11.102,238的最大公約數(shù)是________.12.已知圓錐的頂點為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.13.在中,,,,點在線段上,若,則的面積是_____.14.數(shù)列的前項和,則的通項公式_____.15.如圖,在中,已知點在邊上,,,則的長為____________.16.如果函數(shù)的圖象關(guān)于直線對稱,那么該函數(shù)在上的最小值為_______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量垂直于向量,向量垂直于向量.(1)求向量與的夾角;(2)設(shè),且向量滿足,求的最小值;(3)在(2)的條件下,隨機選取一個向量,求的概率.18.如圖,是正方形,是該正方形的中心,是平面外一點,底面,是的中點.求證:(1)平面;(2)平面平面.19.已知函數(shù).(1)求在區(qū)間上的單調(diào)遞增區(qū)間;(2)求在的值域.20.某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2:表1:生產(chǎn)能力分組人數(shù)48x53表2:生產(chǎn)能力分組人數(shù)6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?。浚ú挥糜嬎?,可通過觀察直方圖直接回答結(jié)論)②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)圖1A類工人生產(chǎn)能力的頻率分布直方圖圖2B類工人生產(chǎn)能力的頻率分布直方圖21.已知函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間:(2)求函數(shù)在區(qū)間上的最大值及取最大值時的集合.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

正四棱錐,連接底面對角線,在中,為側(cè)棱與地面所成角,通過邊的關(guān)系得到答案.【詳解】正四棱錐,連接底面對角線,,易知為等腰直角三角形.中點為,又正四棱錐知:底面即為所求角為,答案為B【點睛】本題考查了線面夾角的計算,意在考察學生的計算能力和空間想象力.2、A【解析】

由給出的遞推式變形,構(gòu)造出新的等比數(shù)列,由等比數(shù)列的通項公式求出的表達式,再利用等比數(shù)列的求和公式求解即可.【詳解】解:解:在數(shù)列中,

由,得,

,

,

則數(shù)列是以2為首項,以2為公比的等比數(shù)列,

.,故選:A.【點睛】本題考查了數(shù)列的遞推式,考查了等比關(guān)系的確定以及等比數(shù)列的求和公式,屬中檔題.3、C【解析】試題分析:由圖象可得最大值為2,則A=2,周期,∴∴,又,是五點法中的第一個點,∴,∴把A,B排除,對于C:,故選C考點:本題考查函數(shù)的圖象和性質(zhì)點評:解決本題的關(guān)鍵是確定的值4、B【解析】

說法①:可以根據(jù)線面平行的判定理判斷出本說法是否正確;說法②:根據(jù)線面垂直的性質(zhì)和面面平行的判定定理可以判斷出本說法是否正確;說法③:當與相交時,是否在平面內(nèi)有不共線的三點到平面的距離相等,進行判斷;說法④:可以通過反證法進行判斷.【詳解】①平行于同一個平面的兩條直線可能平行、相交或異面,不正確;易知②正確;③若平面內(nèi)有不共線的三點到平面的距離相等,則與可能平行,也可能相交,不正確;易知④正確.故選B.【點睛】本題考查了線線位置關(guān)系、面面位置關(guān)系的判斷,分類討論是解題的關(guān)鍵,反證法是經(jīng)常用到的方程.5、A【解析】

連結(jié),由,可知異面直線與所成角是,分別求出,然后利用余弦定理可求出答案.【詳解】連結(jié),因為,所以異面直線與所成角是,在中,,,,所以.故選A.【點睛】本題考查了異面直線的夾角,考查了利用余弦定理求角,考查了計算能力,屬于中檔題.6、B【解析】

根據(jù)確定的兩個相鄰零點的值可以求出最小正周期,進而利用正弦型最小正周期公式求出的值,最后把其中的一個零點代入函數(shù)的解析式中,求出的值即可.【詳解】設(shè)函數(shù)的最小正周期為,因此有,當時,,因此的坐標為:.故選:B【點睛】本題考查了通過三角函數(shù)的圖象求參數(shù)問題,屬于基礎(chǔ)題.7、B【解析】

由圖象可觀察出的最值和周期,從而求出,將圖像上所有的點向右平移個單位得到的函數(shù),可判斷(3)的正誤,利用,可判斷(4)(5)的正誤.【詳解】由圖可知:,所以,,所以,即因為,所以,所以,故(1)(2)正確將圖像上所有的點向右平移個單位得到的函數(shù)為此函數(shù)是奇函數(shù),故(3)錯誤因為所以關(guān)于直線對稱,即有故(4)正確因為所以關(guān)于點對稱,即有故(5)正確綜上可知:正確的有(1)(2)(4)(5)故選:B【點睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),屬于中檔題.8、A【解析】

將不等式化為,可知滿足不等式,不滿足不等式,由此可確定個整數(shù)解為;當和時,解不等式可知不滿足題意;當時,解出不等式的解集,要保證整數(shù)解為,則需,解不等式組求得結(jié)果.【詳解】由得:當時,成立必為不等式的一個整數(shù)解當時,不成立不是不等式的整數(shù)解個整數(shù)解分別為:當時,,不滿足題意當時,解不等式得:或不等式不可能只有個整數(shù)解,不滿足題意當時,,解得:,即的取值范圍為:本題正確選項:【點睛】本題考查根據(jù)不等式整數(shù)解的個數(shù)求解參數(shù)范圍問題,關(guān)鍵是能夠利用特殊值確定整數(shù)解的具體取值,從而解不等式,根據(jù)整數(shù)解的取值來確定解集的上下限,構(gòu)造不等式組求得結(jié)果.9、C【解析】

結(jié)合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點睛】本題考查了互斥事件和對立事件的定義的運用,考查了學生對知識的理解和掌握,屬于基礎(chǔ)題.10、B【解析】分析:根據(jù)等比數(shù)列通項公式求公比.詳解:因為,所以選B.點睛:本題考查等比數(shù)列通項公式,考查基本求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、34【解析】試題分析:根據(jù)輾轉(zhuǎn)相除法的含義,可得238=2×102+34,102=3×34,所以得兩個數(shù)102、238的最大公約數(shù)是34.故答案為34.考點:輾轉(zhuǎn)相除法.12、8π【解析】分析:作出示意圖,根據(jù)條件分別求出圓錐的母線,高,底面圓半徑的長,代入公式計算即可.詳解:如下圖所示,又,解得,所以,所以該圓錐的體積為.點睛:此題為填空題的壓軸題,實際上并不難,關(guān)鍵在于根據(jù)題意作出相應(yīng)圖形,利用平面幾何知識求解相應(yīng)線段長,代入圓錐體積公式即可.13、【解析】

過作于,設(shè),運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設(shè),,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎(chǔ)題.14、【解析】

根據(jù)和之間的關(guān)系,應(yīng)用公式得出結(jié)果【詳解】當時,;當時,;∴故答案為【點睛】本題考查了和之間的關(guān)系式,注意當和時要分開討論,題中的數(shù)列非等差數(shù)列.本題屬于基礎(chǔ)題15、【解析】

由誘導(dǎo)公式可知,在中用余弦定理可得BD的長?!驹斀狻坑深}得,,在中,可得,又,代入得,解得.故答案為:【點睛】本題考查余弦定理和誘導(dǎo)公式,是基礎(chǔ)題。16、【解析】

根據(jù)三角公式得輔助角公式,結(jié)合三角函數(shù)的對稱性求出值,再利用的取值范圍求出函數(shù)的最小值.【詳解】解:,令,則,則.因為函數(shù)的圖象關(guān)于直線對稱,所以,即,則,平方得.整理可得,則,所以函數(shù).因為,所以,當時,即,函數(shù)有最小值為.故答案為:.【點睛】本題主要考查三角函數(shù)最值求解,結(jié)合輔助角公式和利用三角函數(shù)的對稱性建立方程是解決本題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

(1)根據(jù)向量的垂直,轉(zhuǎn)化出方程組,求解方程組即可;(2)將向量賦予坐標,求得向量對應(yīng)點的軌跡方程,將問題轉(zhuǎn)化為圓外一點,到圓上一點的距離的最值問題,即可求解;(3)根據(jù)余弦定理,解得,以及的臨界狀態(tài)時,對應(yīng)的圓心角的大小,利用幾何概型的概率計算公式,即可求解.【詳解】(1)因為故可得,解得①②由①-②可得,解得,將其代入①可得,即將其代入②可得解得,又向量夾角的范圍為,故向量與的夾角為.(2)不妨設(shè),由可得.不妨設(shè)的起始點為坐標原點,終點為C.因此,點C落在以)為圓心,1為半徑的圓上(如圖).因為,即由圓的特點可知的最小值為,即:.(3)當時,因為,,滿足勾股定理,故容易得.當時,假設(shè)此時點落在如圖所示的F點處.如圖所示.因為,由余弦定理容易得,故.所以,本題化為,在半圓上任取一點C,點C落在弧CF上的概率.由幾何概型的概率計算可知:的概率即為圓心角的弧度除以,即.【點睛】本題考查向量垂直時數(shù)量積的表示,以及利用解析的手段解決向量問題的能力,還有幾何概型的概率計算,涉及圓方程的求解,以及余弦定理.本題屬于綜合題,值得總結(jié).18、(1)見解析;(2)見解析.【解析】

(1)連接,證明后即得線面平行;(2)可證明平面,然后得面面垂直.【詳解】(1)如圖,連接,∵分別是中點,∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【點睛】本題考查證明線面平行和面面垂直,掌握線面平行和面面垂直的判定定理是解題關(guān)鍵.19、(1)和.(2)【解析】

(1)利用輔助角公式可將函數(shù)化簡為;令可求出的單調(diào)遞增區(qū)間,截取在上的部分即可得到所求的單調(diào)遞增區(qū)間;(2)利用的范圍可求得的范圍,對應(yīng)正弦函數(shù)的圖象可求得的范圍,進而得到函數(shù)的值域.【詳解】(1)令,解得:令,可知在上單調(diào)遞增令,可知在上單調(diào)遞增在上的單調(diào)遞增區(qū)間為:和(2)當時,即在的值域為:【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間和值域的求解問題;解決此類問題的常用方法是采用整體對應(yīng)的方式,將整體對應(yīng)正弦函數(shù)的單調(diào)區(qū)間或整體

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論