2023-2024學(xué)年重慶市巫山縣達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第1頁(yè)
2023-2024學(xué)年重慶市巫山縣達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第2頁(yè)
2023-2024學(xué)年重慶市巫山縣達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第3頁(yè)
2023-2024學(xué)年重慶市巫山縣達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第4頁(yè)
2023-2024學(xué)年重慶市巫山縣達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年重慶市巫山縣達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下面說(shuō)法正確的個(gè)數(shù)有()①如果三角形三個(gè)內(nèi)角的比是1∶2∶3,那么這個(gè)三角形是直角三角形;②如果三角形的一個(gè)外角等于與它相鄰的一個(gè)內(nèi)角,則這么三角形是直角三角形;③如果一個(gè)三角形的三條高的交點(diǎn)恰好是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一個(gè)內(nèi)角等于另兩個(gè)內(nèi)角之差,那么這個(gè)三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)2.一組數(shù)據(jù):1、2、2、3,若添加一個(gè)數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計(jì)量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差3.已知a<1,點(diǎn)A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數(shù)圖象上的三點(diǎn),則下列結(jié)論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x14.已知x2-2x-3=0,則2x2-4x的值為()A.-6 B.6 C.-2或6 D.-2或305.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π6.已知二次函數(shù)(為常數(shù)),當(dāng)自變量的值滿足時(shí),與其對(duì)應(yīng)的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或57.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.848.在﹣3,0,4,這四個(gè)數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.9.如圖,在中,面積是16,的垂直平分線分別交邊于點(diǎn),若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為()A.6 B.8 C.10 D.1210.某市初中學(xué)業(yè)水平實(shí)驗(yàn)操作考試,要求每名學(xué)生從物理,化學(xué)、生物三個(gè)學(xué)科中隨機(jī)抽取一科參加測(cè)試,小華和小強(qiáng)都抽到物理學(xué)科的概率是()A. B. C. D.11.如圖,在平面直角坐標(biāo)系中,半徑為2的圓P的圓心P的坐標(biāo)為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或512.如圖,平行四邊形ABCD中,點(diǎn)A在反比例函數(shù)y=(k≠0)的圖象上,點(diǎn)D在y軸上,點(diǎn)B、點(diǎn)C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.10二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長(zhǎng)為,的邊長(zhǎng)為,則的內(nèi)切圓半徑為_(kāi)_________.14.如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)F處;過(guò)點(diǎn)P作∠BPF的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是()15.如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.(1)計(jì)算△ABC的周長(zhǎng)等于_____.(2)點(diǎn)P、點(diǎn)Q(不與△ABC的頂點(diǎn)重合)分別為邊AB、BC上的動(dòng)點(diǎn),4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出線段AQ、PC,并簡(jiǎn)要說(shuō)明點(diǎn)P、Q的位置是如何找到的(不要求證明).___________________________.16.如圖是一位同學(xué)設(shè)計(jì)的用手電筒來(lái)測(cè)量某古城墻高度的示意圖.點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測(cè)得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.17.從﹣1,2,3,﹣6這四個(gè)數(shù)中任選兩數(shù),分別記作m,n,那么點(diǎn)(m,n)在函數(shù)圖象上的概率是.18.在正方形中,,點(diǎn)在對(duì)角線上運(yùn)動(dòng),連接,過(guò)點(diǎn)作,交直線于點(diǎn)(點(diǎn)不與點(diǎn)重合),連接,設(shè),,則和之間的關(guān)系是__________(用含的代數(shù)式表示).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖1,三個(gè)正方形ABCD、AEMN、CEFG,其中頂點(diǎn)D、C、G在同一條直線上,點(diǎn)E是BC邊上的動(dòng)點(diǎn),連結(jié)AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結(jié)BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.20.(6分)如圖,點(diǎn)A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求證:四邊形ABCD是矩形;若DE=3,OE=9,求AB、AD的長(zhǎng).21.(6分)在矩形ABCD中,AB=6,AD=8,點(diǎn)E是邊AD上一點(diǎn),EM⊥EC交AB于點(diǎn)M,點(diǎn)N在射線MB上,且AE是AM和AN的比例中項(xiàng).如圖1,求證:∠ANE=∠DCE;如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長(zhǎng);連接AC,如果△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似,求DE的長(zhǎng).22.(8分)如圖,AB是⊙O的直徑,C是弧AB的中點(diǎn),弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.23.(8分)某中學(xué)為了考察九年級(jí)學(xué)生的中考體育測(cè)試成績(jī)(滿分30分),隨機(jī)抽查了40名學(xué)生的成績(jī)(單位:分),得到如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:(1)圖中m的值為_(kāi)______________.(2)求這40個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):(3)根據(jù)樣本數(shù)據(jù),估計(jì)該中學(xué)九年級(jí)2000名學(xué)生中,體育測(cè)試成績(jī)得滿分的大約有多少名學(xué)生。24.(10分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接AD、BD、CD.(1)求證:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.25.(10分)如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線點(diǎn)F.問(wèn):圖中△APD與哪個(gè)三角形全等?并說(shuō)明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關(guān)系?并說(shuō)明理由.26.(12分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對(duì)角線AC上時(shí),如圖所示,半圓與AB的交點(diǎn)為M,求AM的長(zhǎng);(2)半圓與直線CD相切時(shí),切點(diǎn)為N,與線段AD的交點(diǎn)為P,如圖所示,求劣弧AP的長(zhǎng);(3)在旋轉(zhuǎn)過(guò)程中,半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí),設(shè)此交點(diǎn)與點(diǎn)C的距離為d,直接寫出d的取值范圍.27.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過(guò)點(diǎn)B(0,﹣2).(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題分析:①∵三角形三個(gè)內(nèi)角的比是1:2:3,∴設(shè)三角形的三個(gè)內(nèi)角分別為x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小題正確;②∵三角形的一個(gè)外角與它相鄰的一個(gè)內(nèi)角的和是180°,∴若三角形的一個(gè)外角等于與它相鄰的一個(gè)內(nèi)角,則此三角形是直角三角形,故本小題正確;③∵直角三角形的三條高的交點(diǎn)恰好是三角形的一個(gè)頂點(diǎn),∴若三角形的三條高的交點(diǎn)恰好是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是直角三角形,故本小題正確;④∵∠A=∠B=12∴設(shè)∠A=∠B=x,則∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小題正確;⑤∵三角形的一個(gè)外角等于與它不相鄰的兩內(nèi)角之和,三角形的一個(gè)內(nèi)角等于另兩個(gè)內(nèi)角之差,∴三角形一個(gè)內(nèi)角也等于另外兩個(gè)內(nèi)角的和,∴這個(gè)三角形中有一個(gè)內(nèi)角和它相鄰的外角是相等的,且外角與它相鄰的內(nèi)角互補(bǔ),∴有一個(gè)內(nèi)角一定是90°,故這個(gè)三角形是直角三角形,故本小題正確;⑥∵三角形的一個(gè)外角等于與它不相鄰的兩內(nèi)角之和,又一個(gè)內(nèi)角也等于另外兩個(gè)內(nèi)角的和,由此可知這個(gè)三角形中有一個(gè)內(nèi)角和它相鄰的外角是相等的,且外角與它相鄰的內(nèi)角互補(bǔ),∴有一個(gè)內(nèi)角一定是90°,故這個(gè)三角形是直角三角形,故本小題正確.故選D.考點(diǎn):1.三角形內(nèi)角和定理;2.三角形的外角性質(zhì).2、D【解析】

解:A.原來(lái)數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來(lái)數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來(lái)數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來(lái)數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.3、B【解析】

根據(jù)的圖象上的三點(diǎn),把三點(diǎn)代入可以得到x1=﹣,x1=,x3=,在根據(jù)a的大小即可解題【詳解】解:∵點(diǎn)A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數(shù)圖象上的三點(diǎn),∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【點(diǎn)睛】此題主要考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于把三點(diǎn)代入,在根據(jù)a的大小來(lái)判斷4、B【解析】方程兩邊同時(shí)乘以2,再化出2x2-4x求值.解:x2-2x-3=0

2×(x2-2x-3)=0

2×(x2-2x)-6=0

2x2-4x=6

故選B.5、D【解析】

根據(jù)任意兩個(gè)實(shí)數(shù)都可以比較大?。龑?shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點(diǎn)睛】本題考查了實(shí)數(shù)大小的比較,理解任意兩個(gè)實(shí)數(shù)都可以比較大?。龑?shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而小是關(guān)鍵.6、D【解析】

由解析式可知該函數(shù)在時(shí)取得最小值0,拋物線開(kāi)口向上,當(dāng)時(shí),y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減??;根據(jù)時(shí),函數(shù)的最小值為4可分如下三種情況:①若,時(shí),y取得最小值4;②若-1<h<3時(shí),當(dāng)x=h時(shí),y取得最小值為0,不是4;③若,當(dāng)x=3時(shí),y取得最小值4,分別列出關(guān)于h的方程求解即可.【詳解】解:∵當(dāng)x>h時(shí),y隨x的增大而增大,當(dāng)時(shí),y隨x的增大而減小,并且拋物線開(kāi)口向上,

∴①若,當(dāng)時(shí),y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時(shí),當(dāng)x=h時(shí),y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當(dāng)x=3時(shí),y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值分類討論是解題的關(guān)鍵.7、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.8、C【解析】試題分析:根據(jù)實(shí)數(shù)的大小比較法則,正數(shù)大于0,0大于負(fù)數(shù),兩個(gè)負(fù)數(shù)相比,絕對(duì)值大的反而?。虼?,在﹣3,0,1,這四個(gè)數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.9、C【解析】

連接AD,AM,由于△ABC是等腰三角形,點(diǎn)D是BC的中點(diǎn),故,在根據(jù)三角形的面積公式求出AD的長(zhǎng),再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C,,推出,故AD的長(zhǎng)為BM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,MA∵△ABC是等腰三角形,點(diǎn)D是BC邊上的中點(diǎn)∴∴解得∵EF是線段AC的垂直平分線∴點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C∴∵∴AD的長(zhǎng)為BM+MD的最小值∴△CDM的周長(zhǎng)最短故選:C.【點(diǎn)睛】本題考查了三角形線段長(zhǎng)度的問(wèn)題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關(guān)鍵.10、A【解析】

作出樹(shù)狀圖即可解題.【詳解】解:如下圖所示一共有9中可能,符合題意的有1種,故小華和小強(qiáng)都抽到物理學(xué)科的概率是,故選A.【點(diǎn)睛】本題考查了用樹(shù)狀圖求概率,屬于簡(jiǎn)單題,會(huì)畫樹(shù)狀圖是解題關(guān)鍵.11、D【解析】

分圓P在y軸的左側(cè)與y軸相切、圓P在y軸的右側(cè)與y軸相切兩種情況,根據(jù)切線的判定定理解答.【詳解】當(dāng)圓P在y軸的左側(cè)與y軸相切時(shí),平移的距離為3-2=1,當(dāng)圓P在y軸的右側(cè)與y軸相切時(shí),平移的距離為3+2=5,故選D.【點(diǎn)睛】本題考查的是切線的判定、坐標(biāo)與圖形的變化-平移問(wèn)題,掌握切線的判定定理是解題的關(guān)鍵,解答時(shí),注意分情況討論思想的應(yīng)用.12、A【解析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點(diǎn)睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點(diǎn)向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】

根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長(zhǎng)定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質(zhì)即可求出△AEF的內(nèi)切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內(nèi)切圓,由切線長(zhǎng)定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設(shè)M是△AEF的內(nèi)心,過(guò)點(diǎn)M作MH⊥AE于H,

則根據(jù)圖1的結(jié)論得:AH=(AE+AF-EF)=(a-b);

∵M(jìn)A平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.【點(diǎn)睛】本題主要考查的是三角形的內(nèi)切圓、等邊三角形的性質(zhì)、全等三角形的性質(zhì)和判定,切線的性質(zhì),圓的切線長(zhǎng)定理,根據(jù)已知得出AH的長(zhǎng)是解題關(guān)鍵.14、C【解析】

先證明△BPE∽△CDP,再根據(jù)相似三角形對(duì)應(yīng)邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點(diǎn):1.折疊問(wèn)題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.15、12連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【解析】

(1)利用勾股定理求出AB,從而得到△ABC的周長(zhǎng);(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長(zhǎng)=5+4+3=12.(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【點(diǎn)睛】本題涉及的知識(shí)點(diǎn)有:勾股定理,三角形中位線定理,軸對(duì)稱之線路最短問(wèn)題.16、10【解析】

首先證明△ABP∽△CDP,可得=,再代入相應(yīng)數(shù)據(jù)可得答案.【詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用.17、.【解析】試題分析:畫樹(shù)狀圖得:∵共有12種等可能的結(jié)果,點(diǎn)(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(diǎn)(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;列表法與樹(shù)狀圖法.18、或【解析】

當(dāng)F在邊AB上時(shí),如圖1作輔助線,先證明≌,得,,根據(jù)正切的定義表示即可;當(dāng)F在BA的延長(zhǎng)線上時(shí),如圖2,同理可得:≌,表示AF的長(zhǎng),同理可得結(jié)論.【詳解】解:分兩種情況:

當(dāng)F在邊AB上時(shí),如圖1,

過(guò)E作,交AB于G,交DC于H,

四邊形ABCD是正方形,

,,,

,,

,

≌,

,

,

,

中,,

即;

當(dāng)F在BA的延長(zhǎng)線上時(shí),如圖2,

同理可得:≌,

,

中,.【點(diǎn)睛】本題考查了正方形的性質(zhì)、三角形全等的性質(zhì)和判定、三角函數(shù)等知識(shí),熟練掌握正方形中輔助線的作法是關(guān)鍵,并注意F在直線AB上,分類討論.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)74.【解析】

(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結(jié)AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結(jié)AC因?yàn)椤鰽CM∽△ABE,則∠ACM=∠B=90°,因?yàn)椤螦CB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點(diǎn)M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因?yàn)镸C=BE,F(xiàn)C=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)的應(yīng)用,解此題的關(guān)鍵是能正確作出輔助線,綜合性比較強(qiáng),有一定的難度.20、(1)證明見(jiàn)解析;(2)AB、AD的長(zhǎng)分別為2和1.【解析】

(1)證Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【詳解】(1)證明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO與Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四邊形ABCD是平行四邊形.∵,∴四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.即AB、AD的長(zhǎng)分別為2和1.【點(diǎn)睛】矩形的判定和性質(zhì);掌握判斷定證三角形全等是關(guān)鍵.21、(1)見(jiàn)解析;(2);(1)DE的長(zhǎng)分別為或1.【解析】

(1)由比例中項(xiàng)知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項(xiàng)∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當(dāng)△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似時(shí)①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過(guò)點(diǎn)E作EH⊥AC,垂足為點(diǎn)H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設(shè)DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長(zhǎng)分別為或1.【點(diǎn)睛】本題是相似三角形的綜合問(wèn)題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識(shí)點(diǎn).22、(1)見(jiàn)解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結(jié)論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結(jié)果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點(diǎn),∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點(diǎn)睛】本題考查了等腰直角三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、垂徑定理、三角函數(shù)等知識(shí),熟練掌握相似三角形的判定與性質(zhì)、勾股定理是關(guān)鍵.23、(1)25;(2)平均數(shù):28.15,所以眾數(shù)是28,中位數(shù)為28,(3)體育測(cè)試成績(jī)得滿分的大約有300名學(xué)生.【解析】

(1)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得m的值;

(2)根據(jù)條形統(tǒng)計(jì)圖中的數(shù)據(jù)可以計(jì)算出平均數(shù),得到眾數(shù)和中位數(shù);

(3)根據(jù)樣本中得滿分所占的百分比,可以求得該中學(xué)九年級(jí)2000名學(xué)生中,體育測(cè)試成績(jī)得滿分的大約有多少名學(xué)生.【詳解】解:(1),∴m的值為25;(2)平均數(shù):,因?yàn)樵谶@組樣本數(shù)據(jù)中,28出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,所以眾數(shù)是28;因?yàn)閷⑦@組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是28,所以這組樣本數(shù)據(jù)的中位數(shù)為28;(3)×2000=300(名)∴估計(jì)該中學(xué)九年級(jí)2000名學(xué)生中,體育測(cè)試成績(jī)得滿分的大約有300名學(xué)生.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、用樣本估計(jì)總體、加權(quán)平均數(shù)、中位數(shù)、眾數(shù),解答本題的關(guān)鍵是明確它們各自的計(jì)算方法.24、(1)見(jiàn)解析;(2)tan∠DBC=.【解析】

(1)先利用圓周角定理得到∠ACB=90°,再利用平行線的性質(zhì)得∠AEO=90°,則根據(jù)垂徑定理得到,從而有AD=CD;(2)先在Rt△OAE中利用勾股定理計(jì)算出AE,則根據(jù)正切的定義得到tan∠DAE的值,然后根據(jù)圓周角定理得到∠DAC=∠DBC,從而可確定tan∠DBC的值.【詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE==4,∴tan∠DAE=,∵∠DAC=∠DBC,∴tan∠DBC=.【點(diǎn)睛】垂徑定理及圓周角定理是本題的考點(diǎn),熟練掌握垂徑定理及圓周角定理是解題的關(guān)鍵.25、(1)△CPD.理由參見(jiàn)解析;(2)證明參見(jiàn)解析;(3)PC2=PE?PF.理由參見(jiàn)解析.【解析】

(1)根據(jù)菱形的性質(zhì),利用SAS來(lái)判定兩三角形全等;(2)根據(jù)第一問(wèn)的全等三角形結(jié)論及已知,利用兩組角相等則兩三角形相似來(lái)判定即可;(3)根據(jù)相似三角形的對(duì)應(yīng)邊成比例及全等三角形的對(duì)應(yīng)邊相等即可得到結(jié)論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點(diǎn)睛】本題考查1.相似三角形的判定與性質(zhì);2.全等三角形的判定;3.菱形的性質(zhì),綜合性較強(qiáng).26、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長(zhǎng)度,由∠B=∠B′MA=90°、∠B

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論