




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆山東省泰安市寧陽縣一中高三下學(xué)期聯(lián)考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則的最小值為()A. B. C. D.2.已知函數(shù)(其中,,)的圖象關(guān)于點(diǎn)成中心對稱,且與點(diǎn)相鄰的一個(gè)最低點(diǎn)為,則對于下列判斷:①直線是函數(shù)圖象的一條對稱軸;②點(diǎn)是函數(shù)的一個(gè)對稱中心;③函數(shù)與的圖象的所有交點(diǎn)的橫坐標(biāo)之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③3.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.4.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.5.已知展開式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-816.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.7.設(shè)雙曲線的左右焦點(diǎn)分別為,點(diǎn).已知?jiǎng)狱c(diǎn)在雙曲線的右支上,且點(diǎn)不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.8.在中,,,,則邊上的高為()A. B.2 C. D.9.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位10.空間點(diǎn)到平面的距離定義如下:過空間一點(diǎn)作平面的垂線,這個(gè)點(diǎn)和垂足之間的距離叫做這個(gè)點(diǎn)到這個(gè)平面的距離.已知平面,,兩兩互相垂直,點(diǎn),點(diǎn)到,的距離都是3,點(diǎn)是上的動點(diǎn),滿足到的距離與到點(diǎn)的距離相等,則點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是()A. B.3 C. D.11.已知是定義是上的奇函數(shù),滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是()A.3 B.5 C.7 D.912.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_____.14.正項(xiàng)等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時(shí)的值為_____15.已知點(diǎn)是雙曲線漸近線上的一點(diǎn),則雙曲線的離心率為_______16.將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?小球在下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時(shí),向左、右兩邊下落的概率都是,則小球落入袋中的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.18.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點(diǎn),求的最小值.19.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點(diǎn),成等差數(shù)列,且,求a的值.20.(12分)平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,點(diǎn).(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)若直線與曲線交于點(diǎn),曲線與曲線交于點(diǎn),求的面積.21.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過的平面交于點(diǎn),若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.22.(10分)隨著時(shí)代的發(fā)展,A城市的競爭力、影響力日益卓著,這座創(chuàng)新引領(lǐng)型城市有望踏上向“全球城市”發(fā)起“沖擊”的新征程.A城市的活力與包容無不吸引著無數(shù)懷揣夢想的年輕人前來發(fā)展,目前A城市的常住人口大約為1300萬.近日,某報(bào)社記者作了有關(guān)“你來A城市發(fā)展的理由”的調(diào)查問卷,參與調(diào)查的對象年齡層次在25~44歲之間.收集到的相關(guān)數(shù)據(jù)如下:來A城市發(fā)展的理由人數(shù)合計(jì)自然環(huán)境1.森林城市,空氣清新2003002.降水充足,氣候怡人100人文環(huán)境3.城市服務(wù)到位1507004.創(chuàng)業(yè)氛圍好3005.開放且包容250合計(jì)10001000(1)根據(jù)以上數(shù)據(jù),預(yù)測400萬25~44歲年齡的人中,選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有多少人;(2)從所抽取選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發(fā)放紀(jì)念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;(3)在選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中有100名男性;在選擇“人文環(huán)境”作為來A城市發(fā)展的理由的700人中有400名男性;請?zhí)顚懴旅媪新?lián)表,并判斷是否有的把握認(rèn)為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關(guān)?自然環(huán)境人文環(huán)境合計(jì)男女合計(jì)附:,.P()0.0500.0100.001k3.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
利用三角恒等變換化簡三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.2、C【解析】分析:根據(jù)最低點(diǎn),判斷A=3,根據(jù)對稱中心與最低點(diǎn)的橫坐標(biāo)求得周期T,再代入最低點(diǎn)可求得解析式為,依次判斷各選項(xiàng)的正確與否.詳解:因?yàn)闉閷ΨQ中心,且最低點(diǎn)為,所以A=3,且由所以,將帶入得,所以由此可得①錯(cuò)誤,②正確,③當(dāng)時(shí),,所以與有6個(gè)交點(diǎn),設(shè)各個(gè)交點(diǎn)坐標(biāo)依次為,則,所以③正確所以選C點(diǎn)睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題.3、B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨??;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.4、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).5、B【解析】
根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可求得,再通過賦值求得以及結(jié)果即可.【詳解】因?yàn)檎归_式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,故可得,令,故可得,又因?yàn)?,令,則,解得令,則.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),以及通過賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.6、C【解析】
求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.7、A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于中檔題.8、C【解析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.9、D【解析】
根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.10、D【解析】
建立平面直角坐標(biāo)系,將問題轉(zhuǎn)化為點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值,利用到軸的距離等于到點(diǎn)的距離得到點(diǎn)軌跡方程,得到,進(jìn)而得到所求最小值.【詳解】如圖,原題等價(jià)于在直角坐標(biāo)系中,點(diǎn),是第一象限內(nèi)的動點(diǎn),滿足到軸的距離等于點(diǎn)到點(diǎn)的距離,求點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是.故選:.【點(diǎn)睛】本題考查立體幾何中點(diǎn)面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動點(diǎn)軌跡方程,進(jìn)而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.11、D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當(dāng)時(shí),,
令,則,解得或1,
又∵函數(shù)是定義域?yàn)榈钠婧瘮?shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個(gè),
故選D.【點(diǎn)睛】本題考查根的存在性及根的個(gè)數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.12、C【解析】
求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、32π【解析】
設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過計(jì)算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運(yùn)用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進(jìn)行求解即可.【詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當(dāng)平面ABD⊥平面BCD時(shí),當(dāng)四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當(dāng)且僅當(dāng)x時(shí)取等號.解得a=2.此時(shí)三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運(yùn)算能力和空間想象能力.14、2【解析】
先由題意列出關(guān)于的方程,求得的通項(xiàng)公式,再表示出即可求解.【詳解】解:設(shè)公比為,且,時(shí),上式有最小值,故答案為:2.【點(diǎn)睛】本題考查等比數(shù)列、等差數(shù)列的有關(guān)性質(zhì)以及等比數(shù)列求積、求最值的有關(guān)運(yùn)算,中檔題.15、【解析】
先表示出漸近線,再代入點(diǎn),求出,則離心率易求.【詳解】解:的漸近線是因?yàn)樵跐u近線上,所以,故答案為:【點(diǎn)睛】考查雙曲線的離心率的求法,是基礎(chǔ)題.16、【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時(shí)一直向左或者一直向右下落,小球?qū)⒙淙氪?,所以有,則.故本題應(yīng)填.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點(diǎn)睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.18、(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設(shè),其中.在中,,,,,所以,,所以的幾何意義為兩點(diǎn)連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點(diǎn)睛】本題考查正弦定理和余弦定理的實(shí)際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計(jì)算能力.19、(1),(2)【解析】
(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因?yàn)槌傻炔顢?shù)列,所以而,.20、(1).(2)【解析】
(1)根據(jù)題意代入公式化簡即可得到.(2)聯(lián)立極坐標(biāo)方程通過極坐標(biāo)的幾何意義求解,再求點(diǎn)到直線的距離即可算出三角形面積.【詳解】解:(1)曲線,即.∴.曲線的極坐標(biāo)方程為.直線的極坐標(biāo)方程為,即,∴直線的直角坐標(biāo)方程為.(2)設(shè),,∴,解得.又,∴(舍去).∴.點(diǎn)到直線的距離為,∴的面積為.【點(diǎn)睛】此題考查參數(shù)方程,極坐標(biāo),直角坐標(biāo)之間相互轉(zhuǎn)化,注意參數(shù)方程只能先轉(zhuǎn)化為直角坐標(biāo)再轉(zhuǎn)化為極坐標(biāo),屬于較易題目.21、(1)見證明;(2)【解析】
(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標(biāo)系,求出平面的法向量為,平面的法向量為,由可得到答案.【詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即平面,故平面丄平面.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務(wù)合同范本林業(yè)
- 傳單派發(fā)合同范本
- 鄉(xiāng)鎮(zhèn)物業(yè)收費(fèi)合同范本
- 勞務(wù)公司租車合同范本
- 公會主播合同范本
- 勞務(wù)購買合同范例
- 公司經(jīng)營模式合同范本
- 出售買賣合同范本
- 勞動合同轉(zhuǎn)簽合同范本
- 2025國合通測校園招聘筆試參考題庫附帶答案詳解
- 悟哪吒精神做英雄少年開學(xué)第一課主題班會課件-
- 2025年2級注冊計(jì)量師專業(yè)實(shí)務(wù)真題附答案
- 2025年春季學(xué)期教導(dǎo)處工作計(jì)劃及安排表
- 果實(shí)品質(zhì)評價(jià)體系建立與應(yīng)用-深度研究
- 2024年江蘇省中小學(xué)生金鑰匙科技競賽(高中組)考試題庫(含答案)
- 智能制造技術(shù)在工業(yè)設(shè)計(jì)中的應(yīng)用
- 2025年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招高職單招英語2016-2024年參考題庫含答案解析
- 吉林省吉林市普通中學(xué)2024-2025學(xué)年高三上學(xué)期二模試題 數(shù)學(xué)
- 2024年江西建設(shè)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 北京市東城區(qū)2024-2025學(xué)年高一上學(xué)期期末統(tǒng)一檢測歷史試卷(含答案)
- 2025年昆明市公安局招考文職人員高頻重點(diǎn)提升(共500題)附帶答案詳解
評論
0/150
提交評論