版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省鄒城市達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結(jié)AE,若∠E=36°,則∠ADC的度數(shù)是()A.44° B.53° C.72° D.54°2.如圖,△ABC在平面直角坐標(biāo)系中第二象限內(nèi),頂點A的坐標(biāo)是(﹣2,3),先把△ABC向右平移6個單位得到△A1B1C1,再作△A1B1C1關(guān)于x軸對稱圖形△A2B2C2,則頂點A2的坐標(biāo)是()A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)3.如圖,線段AB兩個端點的坐標(biāo)分別為A(2,2)、B(3,1),以原點O為位似中心,在第一象限內(nèi)將線段AB擴(kuò)大為原來的2倍后得到線段CD,則端點C的坐標(biāo)分別為()A.(4,4) B.(3,3) C.(3,1) D.(4,1)4.已知關(guān)于的方程,下列說法正確的是A.當(dāng)時,方程無解B.當(dāng)時,方程有一個實數(shù)解C.當(dāng)時,方程有兩個相等的實數(shù)解D.當(dāng)時,方程總有兩個不相等的實數(shù)解5.如圖,在平面直角坐標(biāo)系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)6.將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()A. B. C. D.7.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是()A. B. C. D.8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結(jié)論:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個9.五名女生的體重(單位:kg)分別為:37、40、38、42、42,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()A.2、40B.42、38C.40、42D.42、4010.如圖是某幾何體的三視圖,下列判斷正確的是()A.幾何體是圓柱體,高為2 B.幾何體是圓錐體,高為2C.幾何體是圓柱體,半徑為2 D.幾何體是圓錐體,直徑為211.對于非零的兩個實數(shù)、,規(guī)定,若,則的值為()A. B. C. D.12.如圖,在⊙O中,弦AB=CD,AB⊥CD于點E,已知CE?ED=3,BE=1,則⊙O的直徑是()A.2 B. C.2 D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,拋物線交軸于,兩點,交軸于點,點關(guān)于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.14.將一張長方形紙片折疊成如圖所示的形狀,則∠ABC=_________.15.如圖,已知點E是菱形ABCD的AD邊上的一點,連接BE、CE,M、N分別是BE、CE的中點,連接MN,若∠A=60°,AB=4,則四邊形BCNM的面積為_____.16.函數(shù)的自變量x的取值范圍是_____.17.在平面直角坐標(biāo)系的第一象限內(nèi),邊長為1的正方形ABCD的邊均平行于坐標(biāo)軸,A點的坐標(biāo)為(a,a),如圖,若曲線y=(x>0)與此正方形的邊有交點,則a的取值范圍是_______.18.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側(cè)面展開圖的面積為.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣3x+b與拋物線的另一個交點為D.(1)若點D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標(biāo);(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運(yùn)動到點E,再沿線段ED以每秒2320.(6分)如圖,在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B的直線與CD的延長線交于點F,AC∥BF.(1)若∠FGB=∠FBG,求證:BF是⊙O的切線;(2)若tan∠F=,CD=a,請用a表示⊙O的半徑;(3)求證:GF2﹣GB2=DF?GF.21.(6分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.22.(8分)如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當(dāng)∠B=時,四邊形OCAD是菱形;②當(dāng)∠B=時,AD與相切.23.(8分)已知:如圖所示,在中,,,求和的度數(shù).24.(10分)貨車行駛25與轎車行駛35所用時間相同.已知轎車每小時比貨車多行駛20,求貨車行駛的速度.25.(10分)如圖,已知拋物線經(jīng)過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉(zhuǎn)后,點落在點的位置,將拋物線沿軸平移后經(jīng)過點,求平移后所得圖象的函數(shù)關(guān)系式;(3)設(shè)(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標(biāo).26.(12分)如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點E按順時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當(dāng)旋轉(zhuǎn)停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.27.(12分)問題情境:課堂上,同學(xué)們研究幾何變量之間的函數(shù)關(guān)系問題:如圖,菱形ABCD的對角線AC,BD相交于點O,AC=4,BD=1.點P是AC上的一個動點,過點P作MN⊥AC,垂足為點P(點M在邊AD、DC上,點N在邊AB、BC上).設(shè)AP的長為x(0≤x≤4),△AMN的面積為y.建立模型:(1)y與x的函數(shù)關(guān)系式為:,解決問題:(1)為進(jìn)一步研究y隨x變化的規(guī)律,小明想畫出此函數(shù)的圖象.請你補(bǔ)充列表,并在如圖的坐標(biāo)系中畫出此函數(shù)的圖象:x01134y00(3)觀察所畫的圖象,寫出該函數(shù)的兩條性質(zhì):.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,再根據(jù)直角三角形的性質(zhì)和平行四邊形的性質(zhì)可得解.【詳解】根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,根據(jù)∠E=36°可得∠B=54°,根據(jù)平行四邊形的性質(zhì)可得∠ADC=∠B=54°.故選D【點睛】本題考查了平行四邊形的性質(zhì)、圓的基本性質(zhì).2、A【解析】
直接利用平移的性質(zhì)結(jié)合軸對稱變換得出對應(yīng)點位置.【詳解】如圖所示:頂點A2的坐標(biāo)是(4,-3).故選A.【點睛】此題主要考查了軸對稱變換和平移變換,正確得出對應(yīng)點位置是解題關(guān)鍵.3、A【解析】
利用位似圖形的性質(zhì)結(jié)合對應(yīng)點坐標(biāo)與位似比的關(guān)系得出C點坐標(biāo).【詳解】∵以原點O為位似中心,在第一象限內(nèi)將線段AB擴(kuò)大為原來的2倍后得到線段CD,∴A點與C點是對應(yīng)點,∵C點的對應(yīng)點A的坐標(biāo)為(2,2),位似比為1:2,∴點C的坐標(biāo)為:(4,4)故選A.【點睛】本題考查了位似變換,正確把握位似比與對應(yīng)點坐標(biāo)的關(guān)系是解題關(guān)鍵.4、C【解析】當(dāng)時,方程為一元一次方程有唯一解.當(dāng)時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當(dāng)時,方程有兩個相等的實數(shù)解,當(dāng)且時,方程有兩個不相等的實數(shù)解.綜上所述,說法C正確.故選C.5、D【解析】
試題分析:方法一:∵△ABO和△A′B′O關(guān)于原點位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點A(―3,6)且相似比為,∴點A的對應(yīng)點A′的坐標(biāo)是(―3×,6×),∴A′(-1,2).∵點A′′和點A′(-1,2)關(guān)于原點O對稱,∴A′′(1,―2).故答案選D.考點:位似變換.6、A【解析】試題解析:∵一根圓柱形的空心鋼管任意放置,∴不管鋼管怎么放置,它的三視圖始終是,,,主視圖是它們中一個,∴主視圖不可能是.故選A.7、C【解析】
根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補(bǔ)角相等可得出∠BAP=∠CPD,進(jìn)而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數(shù)圖象、相似三角形的判定與性質(zhì),利用相似三角形的性質(zhì)找出y=-x2+x是解題的關(guān)鍵.8、D【解析】①因為二次函數(shù)的對稱軸是直線x=﹣1,由圖象可得左交點的橫坐標(biāo)大于﹣3,小于﹣2,所以﹣=﹣1,可得b=2a,當(dāng)x=﹣3時,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以①選項結(jié)論正確;②∵拋物線的對稱軸是直線x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此選項結(jié)論不正確;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0有實數(shù)根;④由圖象得:當(dāng)x>﹣1時,y隨x的增大而減小,∵當(dāng)k為常數(shù)時,0≤k2≤k2+1,∴當(dāng)x=k2的值大于x=k2+1的函數(shù)值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此選項結(jié)論不正確;所以正確結(jié)論的個數(shù)是1個,故選D.9、D【解析】【分析】根據(jù)眾數(shù)和中位數(shù)的定義分別進(jìn)行求解即可得.【詳解】這組數(shù)據(jù)中42出現(xiàn)了兩次,出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)是42,將這組數(shù)據(jù)從小到大排序為:37,38,40,42,42,所以這組數(shù)據(jù)的中位數(shù)為40,故選D.【點睛】本題考查了眾數(shù)和中位數(shù),一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).將一組數(shù)據(jù)從小到大(或從大到?。┡判蚝?,位于最中間的數(shù)(或中間兩數(shù)的平均數(shù))是這組數(shù)據(jù)的中位數(shù).10、A【解析】試題解析:根據(jù)主視圖和左視圖為矩形是柱體,根據(jù)俯視圖是圓可判斷出這個幾何體應(yīng)該是圓柱,再根據(jù)左視圖的高度得出圓柱體的高為2;故選A.考點:由三視圖判斷幾何體.11、D【解析】試題分析:因為規(guī)定,所以,所以x=,經(jīng)檢驗x=是分式方程的解,故選D.考點:1.新運(yùn)算;2.分式方程.12、C【解析】
作OH⊥AB于H,OG⊥CD于G,連接OA,根據(jù)相交弦定理求出EA,根據(jù)題意求出CD,根據(jù)垂徑定理、勾股定理計算即可.【詳解】解:作OH⊥AB于H,OG⊥CD于G,連接OA,由相交弦定理得,CE?ED=EA?BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE?ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由題意得,四邊形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直徑為,故選C.【點睛】此題考查了相交弦定理、垂徑定理、勾股定理、矩形的判定與性質(zhì);根據(jù)圖形作出相應(yīng)的輔助線是解本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4)、作點E關(guān)于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當(dāng)x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關(guān)于對稱軸的對稱點E的坐標(biāo)為(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4),作點E關(guān)于x軸的對稱點E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【點睛】本題主要考查拋物線的性質(zhì)以及兩點間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.14、73°【解析】試題解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.15、3【解析】
如圖,連接BD.首先證明△BCD是等邊三角形,推出S△EBC=S△DBC=×42=4,再證明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解決問題.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等邊三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S陰=4-=3,故答案為3.【點睛】本題考查相似三角形的判定和性質(zhì)、三角形的中位線定理、菱形的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.16、x≠1【解析】
根據(jù)分母不等于2列式計算即可得解.【詳解】由題意得,x-1≠2,解得x≠1.故答案為x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為2.17、【解析】
因為A點的坐標(biāo)為(a,a),則C(a﹣1,a﹣1),根據(jù)題意只要分別求出當(dāng)A點或C點在曲線上時a的值即可得到答案.【詳解】解:∵A點的坐標(biāo)為(a,a),∴C(a﹣1,a﹣1),當(dāng)C在雙曲線y=時,則a﹣1=,解得a=+1;當(dāng)A在雙曲線y=時,則a=,解得a=,∴a的取值范圍是≤a≤+1.故答案為≤a≤+1.【點睛】本題主要考查反比例函數(shù)與幾何圖形的綜合問題,解此題的關(guān)鍵在于根據(jù)題意找到關(guān)鍵點,然后將關(guān)鍵點的坐標(biāo)代入反比例函數(shù)求得確定值即可.18、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側(cè)面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣3(x+3)(x﹣1)=﹣3x2﹣23x+33;(2)(﹣4,﹣153)和(﹣6,﹣37)(3)(1,﹣43【解析】試題分析:(1)根據(jù)二次函數(shù)的交點式確定點A、B的坐標(biāo),求出直線的解析式,求出點D的坐標(biāo),求出拋物線的解析式;(2)作PH⊥x軸于H,設(shè)點P的坐標(biāo)為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據(jù)相似三角形的性質(zhì)計算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據(jù)正切的定義求出Q的運(yùn)動時間t=BE+EF時,t最小即可.試題解析:(1)∵y=a(x+3)(x﹣1),∴點A的坐標(biāo)為(﹣3,0)、點B兩的坐標(biāo)為(1,0),∵直線y=﹣x+b經(jīng)過點A,∴b=﹣3,∴y=﹣x﹣3,當(dāng)x=2時,y=﹣5,則點D的坐標(biāo)為(2,﹣5),∵點D在拋物線上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)作PH⊥x軸于H,設(shè)點P的坐標(biāo)為(m,n),當(dāng)△BPA∽△ABC時,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合題意,舍去),當(dāng)m=﹣4時,n=5a,∵△BPA∽△ABC,∴=,即AB2=AC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則n=5a=﹣,∴點P的坐標(biāo)為(﹣4,﹣);當(dāng)△PBA∽△ABC時,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合題意,舍去),當(dāng)m=﹣6時,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則點P的坐標(biāo)為(﹣6,﹣),綜上所述,符合條件的點P的坐標(biāo)為(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,則tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的運(yùn)動時間t=+=BE+EF,∴當(dāng)BE和EF共線時,t最小,則BE⊥DM,E(1,﹣4).考點:二次函數(shù)綜合題.20、(1)證明見解析;(2);(3)證明見解析.【解析】
(1)根據(jù)等邊對等角可得∠OAB=∠OBA,然后根據(jù)OA⊥CD得到∠OAB+∠AGC=90°,從而推出∠FBG+∠OBA=90°,從而得到OB⊥FB,再根據(jù)切線的定義證明即可.(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ACF=∠F,根據(jù)垂徑定理可得CE=CD=a,連接OC,設(shè)圓的半徑為r,表示出OE,然后利用勾股定理列式計算即可求出r.(3)連接BD,根據(jù)在同圓或等圓中,同弧所對的圓周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,從而求出△BDG和△FBG相似,根據(jù)相似三角形對應(yīng)邊成比例列式表示出BG2,然后代入等式左邊整理即可得證.【詳解】解:(1)證明:∵OA=OB,∴∠OAB=∠OBA.∵OA⊥CD,∴∠OAB+∠AGC=90°.又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°.∴OB⊥FB.∵AB是⊙O的弦,∴點B在⊙O上.∴BF是⊙O的切線.(2)∵AC∥BF,∴∠ACF=∠F.∵CD=a,OA⊥CD,∴CE=CD=a.∵tan∠F=,∴,即.解得.連接OC,設(shè)圓的半徑為r,則,在Rt△OCE中,,即,解得.(3)證明:連接BD,∵∠DBG=∠ACF,∠ACF=∠F(已證),∴∠DBG=∠F.又∵∠FGB=∠FGB,∴△BDG∽△FBG.∴,即GB2=DG?GF.∴GF2﹣GB2=GF2﹣DG?GF=GF(GF﹣DG)=GF?DF,即GF2﹣GB2=DF?GF.21、(1)見解析;(2)2π.【解析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了弧長公式.22、(1)證明見解析;(2)①30°,②45°【解析】試題分析:(1)根據(jù)已知條件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根據(jù)三角形內(nèi)角和定理得出∠AOC=∠OAD,從而證得OC∥AD,即可證得結(jié)論;
(2)①若四邊形OCAD是菱形,則OC=AC,從而證得OC=OA=AC,得出∠即可求得
②AD與相切,根據(jù)切線的性質(zhì)得出根據(jù)AD∥OC,內(nèi)錯角相等得出從而求得試題解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四邊形OCAD是平行四邊形;(2)①∵四邊形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∴故答案為②∵AD與相切,∴∵AD∥OC,∴∴故答案為23、,.【解析】
根據(jù)等腰三角形的性質(zhì)即可求出∠B,再根據(jù)三角形外角定理即可求出∠C.【詳解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【點睛】此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知等邊對等角.24、50千米/小時.【解析】
根據(jù)題中等量關(guān)系:貨車行駛25千米與小車行駛35千米所用時間相同,列出方程求解即可.【詳解】解:設(shè)貨車的速度為x千米/小時,依題意得:解:根據(jù)題意,得
.
解得:x=50經(jīng)檢驗x=50是原方程的解.答:貨車的速度為50千米/小時.【點睛】本題考查了分式方程的應(yīng)用,找出題中的等量關(guān)系,列出關(guān)系式是解題的關(guān)鍵.25、(1)拋物線的解析式為.(2)平移后的拋物線解析式為:.(3)點的坐標(biāo)為或.【解析】分析:(1)利用待定系數(shù)法,將點A,B的坐標(biāo)代入解析式即可求得;(2)根據(jù)旋轉(zhuǎn)的知識可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋轉(zhuǎn)后C點的坐標(biāo)為(3,1),當(dāng)x=3時,由y=x2-3x+2得y=2,可知拋物線y=x2-3x+2過點(3,2)∴將原拋物線沿y軸向下平移1個單位后過點C.∴平移后的拋物線解析式為:y=x2-3x+1;(3)首先求得B1,D1的坐標(biāo),根據(jù)圖形分別求得即可,要注意利用方程思想.詳解:(1)已知拋物線經(jīng)過,,∴,解得,∴所求拋物線的解析式為.(2)∵,,∴,,可得旋轉(zhuǎn)后點的坐標(biāo)為.當(dāng)時,由得,可知拋物線過點.∴將原拋物線沿軸向下平移1個單位長度后過點.∴平移后的拋物線解析式為:.(3)∵點在上,可設(shè)點坐標(biāo)為,將配方得,∴其對稱軸為.由題得B1(0,1).①當(dāng)時,如圖①,∵,∴,∴,此時,∴點的坐標(biāo)為.②當(dāng)時,如圖②,同理可得,∴,此時,∴點的坐標(biāo)為.綜上,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 砌體施工合同
- 常用材料采購合同模板
- 項目申報策劃服務(wù)合同
- 特許加盟連鎖合同
- 車輛租賃合同協(xié)議
- 箱包購銷合同的法律效力分析
- 展會服務(wù)合同中的展會技能提升
- 檢驗鑒定合同書協(xié)議書指南
- 熱處理材料供應(yīng)協(xié)議
- 茶葉共享與互利購銷合同
- GB/T 45008-2024稀土熱障涂層材料鋯酸釓鐿粉末
- 經(jīng)理與領(lǐng)導(dǎo)人員管理制度
- 全國第三屆職業(yè)技能大賽(數(shù)字孿生應(yīng)用技術(shù))選拔賽理論考試題庫(含答案)
- 應(yīng)用數(shù)理統(tǒng)計知到智慧樹章節(jié)測試課后答案2024年秋中國農(nóng)業(yè)大學(xué)
- 文藝復(fù)興史學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 大國三農(nóng)II-農(nóng)業(yè)科技版智慧樹知到期末考試答案章節(jié)答案2024年中國農(nóng)業(yè)大學(xué)
- 綠化養(yǎng)護(hù)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 2024年湛江市農(nóng)業(yè)發(fā)展集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評價導(dǎo)則
- MOOC 創(chuàng)新思維與創(chuàng)業(yè)實驗-東南大學(xué) 中國大學(xué)慕課答案
- JBT 1472-2023 泵用機(jī)械密封 (正式版)
評論
0/150
提交評論