廣西壯族自治區(qū)貴港市桂平市2023-2024學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第1頁(yè)
廣西壯族自治區(qū)貴港市桂平市2023-2024學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第2頁(yè)
廣西壯族自治區(qū)貴港市桂平市2023-2024學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第3頁(yè)
廣西壯族自治區(qū)貴港市桂平市2023-2024學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第4頁(yè)
廣西壯族自治區(qū)貴港市桂平市2023-2024學(xué)年高考仿真卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西壯族自治區(qū)貴港市桂平市2023-2024學(xué)年高考仿真卷數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.2.集合,則()A. B. C. D.3.已知拋物線的焦點(diǎn)為,若拋物線上的點(diǎn)關(guān)于直線對(duì)稱的點(diǎn)恰好在射線上,則直線被截得的弦長(zhǎng)為()A. B. C. D.4.已知圓關(guān)于雙曲線的一條漸近線對(duì)稱,則雙曲線的離心率為()A. B. C. D.5.設(shè)全集,集合,,則()A. B. C. D.6.若集合,則=()A. B. C. D.7.已知集合,定義集合,則等于()A. B.C. D.8.已知向量,且,則m=()A.?8 B.?6C.6 D.89.已知全集,則集合的子集個(gè)數(shù)為()A. B. C. D.10.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是()A. B.C. D.11.已知為定義在上的偶函數(shù),當(dāng)時(shí),,則()A. B. C. D.12.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于函數(shù)有下列四個(gè)命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關(guān)于中心對(duì)稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導(dǎo)函數(shù)不存在極小值.其中正確的命題有______.(寫(xiě)出所有正確命題的序號(hào))14.在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求直線和曲線的普通方程;(2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最小值及此時(shí)點(diǎn)的坐標(biāo).15.展開(kāi)式中的系數(shù)為_(kāi)______________.16.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),證明,在恒成立;(2)若在處取得極大值,求的取值范圍.18.(12分)已知拋物線Γ:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線Γ上一點(diǎn),且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經(jīng)過(guò)點(diǎn)A(3,﹣2)的直線交拋物線Γ于M,N兩點(diǎn),經(jīng)過(guò)定點(diǎn)B(3,﹣6)和M的直線與拋物線Γ交于另一點(diǎn)L,問(wèn)直線NL是否恒過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn),否則說(shuō)明理由.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若對(duì)任意恒成立,求的取值范圍.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).21.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過(guò)點(diǎn).為橢圓的右焦點(diǎn),為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若,求的值;⑶設(shè)直線,的斜率分別為,,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.22.(10分)在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測(cè)評(píng)結(jié)果,在畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:優(yōu)秀合格總計(jì)男生6女生18合計(jì)60已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣方式在全校學(xué)生中抽取少數(shù)一部分來(lái)分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.024

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.2、D【解析】

利用交集的定義直接計(jì)算即可.【詳解】,故,故選:D.【點(diǎn)睛】本題考查集合的交運(yùn)算,注意常見(jiàn)集合的符號(hào)表示,本題屬于基礎(chǔ)題.3、B【解析】

由焦點(diǎn)得拋物線方程,設(shè)點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱可求出點(diǎn)的坐標(biāo),寫(xiě)出直線方程,聯(lián)立拋物線求交點(diǎn),計(jì)算弦長(zhǎng)即可.【詳解】拋物線的焦點(diǎn)為,則,即,設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個(gè)交點(diǎn)為,由,解得或,∴,∴,故直線被截得的弦長(zhǎng)為.故選:B.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),點(diǎn)關(guān)于直線對(duì)稱,屬于中檔題.4、C【解析】

將圓,化為標(biāo)準(zhǔn)方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標(biāo)準(zhǔn)方程為:,所以圓心為.因?yàn)殡p曲線,所以其漸近線方程為,又因?yàn)閳A關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,所以.所以.故選:C【點(diǎn)睛】本題主要考查圓的方程及對(duì)稱性,還有雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.5、B【解析】

可解出集合,然后進(jìn)行補(bǔ)集、交集的運(yùn)算即可.【詳解】,,則,因此,.故選:B.【點(diǎn)睛】本題考查補(bǔ)集和交集的運(yùn)算,涉及一元二次不等式的求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.6、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.7、C【解析】

根據(jù)定義,求出,即可求出結(jié)論.【詳解】因?yàn)榧?,所以,則,所以.故選:C.【點(diǎn)睛】本題考查集合的新定義運(yùn)算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.9、C【解析】

先求B.再求,求得則子集個(gè)數(shù)可求【詳解】由題=,則集合,故其子集個(gè)數(shù)為故選C【點(diǎn)睛】此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個(gè)數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題10、D【解析】

由已知可將問(wèn)題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn),作出圖象,由圖可得:點(diǎn)(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時(shí),k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn).作出函數(shù)y=f(x)的圖象,如圖,故點(diǎn)(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當(dāng)直線y=kx-和y=lnx相切時(shí),設(shè)切點(diǎn)橫坐標(biāo)為m,則k==,∴m=.此時(shí),k==,f(x)的圖象和直線y=kx-有3個(gè)交點(diǎn),不滿足條件,故所求k的取值范圍是,故選D..【點(diǎn)睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計(jì)算能力、觀察能力,屬于難題.11、D【解析】

判斷,利用函數(shù)的奇偶性代入計(jì)算得到答案.【詳解】∵,∴.故選:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.12、A【解析】

根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因?yàn)?,故要得到,只需將向左平移個(gè)單位長(zhǎng)度.故選:A.【點(diǎn)睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】

由單調(diào)性、對(duì)稱性概念、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值的關(guān)系進(jìn)行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關(guān)于中心對(duì)稱,②正確;,時(shí)取等號(hào),∴③正確;,設(shè),則,顯然是即的極小值點(diǎn),④錯(cuò)誤.故答案為:①②③.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性、對(duì)稱性,考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值,解題時(shí)按照相關(guān)概念判斷即可,屬于中檔題.14、(1),;(2),.【解析】

(1)利用代入消參的方法即可將兩個(gè)參數(shù)方程轉(zhuǎn)化為普通方程;(2)利用參數(shù)方程,結(jié)合點(diǎn)到直線的距離公式,將問(wèn)題轉(zhuǎn)化為求解二次函數(shù)最值的問(wèn)題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數(shù)方程中,,所以曲線的普通方程為.(2)設(shè)點(diǎn).點(diǎn)到直線的距離.當(dāng)時(shí),,所以點(diǎn)到直線的距離的最小值為.此時(shí)點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查將參數(shù)方程轉(zhuǎn)化為普通方程,以及利用參數(shù)方程求距離的最值問(wèn)題,屬中檔題.15、【解析】

把按照二項(xiàng)式定理展開(kāi),可得的展開(kāi)式中的系數(shù).【詳解】解:,故它的展開(kāi)式中的系數(shù)為,故答案為:.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.16、【解析】

模擬程序的運(yùn)行過(guò)程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【詳解】模擬程序的運(yùn)行過(guò)程知,該程序運(yùn)行后執(zhí)行:.故答案為:【點(diǎn)睛】本題考查算法語(yǔ)句中的循環(huán)語(yǔ)句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】

(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負(fù),求導(dǎo),分,,三種情況討論求解.【詳解】(1)因?yàn)?,所以,令,則,所以是的增函數(shù),故,即.因?yàn)樗?,①?dāng)時(shí),,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當(dāng)時(shí),所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當(dāng)時(shí),,使得,即,但當(dāng)時(shí),即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點(diǎn)睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.18、(1)y2=4x;;(2)直線NL恒過(guò)定點(diǎn)(﹣3,0),理由見(jiàn)解析.【解析】

(1)根據(jù)拋物線的方程,求得焦點(diǎn)F(,0),利用(2,2),表示點(diǎn)P的坐標(biāo),再代入拋物線方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因?yàn)锳(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方程為:y﹣y1(x),代入化簡(jiǎn)求解.【詳解】(1)由拋物線的方程可得焦點(diǎn)F(,0),滿足(2,2)的P的坐標(biāo)為(2,2),P在拋物線上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以拋物線的方程為:y2=4x;(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),則y12=4x1,y22=4x2,直線MN的斜率kMN,則直線MN的方程為:y﹣y0(x),即y①,同理可得直線ML的方程整理可得y②,將A(3,﹣2),B(3,﹣6)分別代入①,②的方程可得,消y0可得y1y2=12,易知直線kNL,則直線NL的方程為:y﹣y1(x),即yx,故yx,所以y(x+3),因此直線NL恒過(guò)定點(diǎn)(﹣3,0).【點(diǎn)睛】本題主要考查了拋物線的方程及直線與拋物線的位置關(guān)系,直線過(guò)定點(diǎn)問(wèn)題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.19、(1);(2).【解析】

(1)通過(guò)討論的范圍,分為,,三種情形,分別求出不等式的解集即可;(2)通過(guò)分離參數(shù)思想問(wèn)題轉(zhuǎn)化為,根據(jù)絕對(duì)值不等式的性質(zhì)求出最值即可得到的范圍.【詳解】(1)當(dāng)時(shí),原不等式等價(jià)于,解得,所以,當(dāng)時(shí),原不等式等價(jià)于,解得,所以此時(shí)不等式無(wú)解,當(dāng)時(shí),原不等式等價(jià)于,解得,所以綜上所述,不等式解集為.(2)由,得,當(dāng)時(shí),恒成立,所以;當(dāng)時(shí),.因?yàn)楫?dāng)且僅當(dāng)即或時(shí),等號(hào)成立,所以;綜上的取值范圍是.【點(diǎn)睛】本題考查了解絕對(duì)值不等式問(wèn)題,考查絕對(duì)值不等式的性質(zhì)以及分類討論思想,轉(zhuǎn)化思想,屬于中檔題.20、(1);(2)最小值為,此時(shí)【解析】

(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標(biāo)和直角坐標(biāo)相互轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.(2)設(shè)出的坐標(biāo),結(jié)合點(diǎn)到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標(biāo)方程是(2)設(shè),的最小值就是點(diǎn)到直線的最小距離.設(shè)在時(shí),,是最小值,此時(shí),所以,所求最小值為,此時(shí)【點(diǎn)睛】本小題主要考

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論