山東省青島市青島大附屬中學2024屆中考數(shù)學對點突破模擬試卷含解析_第1頁
山東省青島市青島大附屬中學2024屆中考數(shù)學對點突破模擬試卷含解析_第2頁
山東省青島市青島大附屬中學2024屆中考數(shù)學對點突破模擬試卷含解析_第3頁
山東省青島市青島大附屬中學2024屆中考數(shù)學對點突破模擬試卷含解析_第4頁
山東省青島市青島大附屬中學2024屆中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省青島市青島大附屬中學2024屆中考數(shù)學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當三個數(shù)字與所設定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.12.下列說法正確的是()A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數(shù)據(jù)1,a,4,4,9,它的平均數(shù)是4,則這組數(shù)據(jù)的方差是7.6C.12名同學中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是3.下面的幾何圖形是由四個相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.4.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內(nèi)角和為D.任意作一個菱形其對角線相等且互相垂直平分5.在下列實數(shù)中,﹣3,,0,2,﹣1中,絕對值最小的數(shù)是()A.﹣3 B.0 C. D.﹣16.按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是()①△ABC與△DEF是位似圖形

②△ABC與△DEF是相似圖形③△ABC與△DEF的周長比為1:2

④△ABC與△DEF的面積比為4:1.A.1 B.2 C.3 D.47.如圖,點A、B、C在⊙O上,∠OAB=25°,則∠ACB的度數(shù)是()A.135° B.115° C.65° D.50°8.估計﹣÷2的運算結(jié)果在哪兩個整數(shù)之間()A.0和1 B.1和2 C.2和3 D.3和49.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為210.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.菱形 C.平行四邊形 D.正五邊形二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.12.甲、乙兩人分別從A,B兩地相向而行,他們距B地的距離s(km)與時間t(h)的關(guān)系如圖所示,那么乙的速度是__km/h.13.若不等式組的解集為,則________.14.如圖,甲和乙同時從學校放學,兩人以各自送度勻速步行回家,甲的家在學校的正西方向,乙的家在學校的正東方向,乙家離學校的距離比甲家離學校的距離遠3900米,甲準備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習冊.于是立即步去追乙,終于在途中追上了乙并交還了練習冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結(jié)果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學校出發(fā)的時間x分鐘的函數(shù)關(guān)系圖,則甲的家和乙的家相距_____米.15.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.16.若不等式(a+1)x>a+1的解集是x<1,則a的取值范圍是_________.17.的算術(shù)平方根為______.三、解答題(共7小題,滿分69分)18.(10分)2018年4月份,鄭州市教育局針對鄭州市中小學參與課外輔導進行調(diào)查,根據(jù)學生參與課外輔導科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據(jù)調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結(jié)合圖中所給信息解答下列問題:(1)本次被調(diào)查的學員共有人;在被調(diào)查者中參加“3科”課外輔導的有人.(2)將條形統(tǒng)計圖補充完整;(3)已知鄭州市中小學約有24萬人,那么請你估計一下參與輔導科目不多于2科的學生大約有多少人.19.(5分)計算:()-1+()0+-2cos30°.20.(8分)已知:如圖,E是BC上一點,AB=EC,AB∥CD,BC=CD.求證:AC=ED.21.(10分)如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,∠DEB=30°,求弦CD長.22.(10分)如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.(1)求該二次函數(shù)的解析式及點M的坐標;(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫解答過程).23.(12分)如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此時小強頭部E點與地面DK相距多少?(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?24.(14分)某農(nóng)場急需銨肥8噸,在該農(nóng)場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關(guān)系如圖所示.(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);(2)若農(nóng)場到B公司的路程是農(nóng)場到A公司路程的2倍,農(nóng)場到A公司的路程為m千米,設農(nóng)場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場建議總費用最低的購買方案.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結(jié)果,一次就能打開該密碼的結(jié)果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.2、B【解析】

分別用方差、全面調(diào)查與抽樣調(diào)查、隨機事件及概率的知識逐一進行判斷即可得到答案.【詳解】A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調(diào)查的方法,故本選項錯誤;B.根據(jù)平均數(shù)是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【點睛】本題考查的知識點是概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件,解題的關(guān)鍵是熟練的掌握概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件.3、C【解析】試題分析:觀察可得,只有選項C的主視圖和左視圖相同,都為,故答案選C.考點:簡單幾何體的三視圖.4、B【解析】

必然事件就是一定發(fā)生的事件,根據(jù)定義對各個選項進行判斷即可.【詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發(fā)生,是隨機事件,故本選項錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發(fā)生,是必然事件,故本選項正確;C、三角形的內(nèi)角和為180°,所以任意作一個三角形其內(nèi)角和為是不可能事件,故本選項錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發(fā)生,是隨機事件,故選項錯誤,故選:B.【點睛】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.熟練掌握相關(guān)圖形的性質(zhì)也是解題的關(guān)鍵.5、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數(shù)是0,故選:B.6、C【解析】

根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】解:根據(jù)位似性質(zhì)得出①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形,∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項錯誤,根據(jù)面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.故選C.【點睛】此題主要考查了位似圖形的性質(zhì),中等難度,熟悉位似圖形的性質(zhì)是解決問題的關(guān)鍵.7、B【解析】

由OA=OB得∠OAB=∠OBA=25°,根據(jù)三角形內(nèi)角和定理計算出∠AOB=130°,則根據(jù)圓周角定理得∠P=

∠AOB,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)求解.【詳解】解:在圓上取點

P

,連接

PA

、

PB.∵OA=OB

,∴∠OAB=∠OBA=25°

,∴∠AOB=180°?2×25°=130°

,∴∠P=∠AOB=65°,∴∠ACB=180°?∠P=115°.故選B.【點睛】本題考查的是圓,熟練掌握圓周角定理是解題的關(guān)鍵.8、D【解析】

先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點睛】本題主要考查的是二次根式的混合運算,估算無理數(shù)的大小,利用夾逼法估算出的大小是解題的關(guān)鍵.9、A【解析】

根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.10、B【解析】

在平面內(nèi),如果一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi)一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形能互相重合,那么這個圖形叫做中心對稱圖形,分別判斷各選項即可解答.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、菱形是軸對稱圖形,也是中心對稱圖形,故此選項正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.12、3.6【解析】分析:根據(jù)題意,甲的速度為6km/h,乙出發(fā)后2.5小時兩人相遇,可以用方程思想解決問題.詳解:由題意,甲速度為6km/h.當甲開始運動時相距36km,兩小時后,乙開始運動,經(jīng)過2.5小時兩人相遇.設乙的速度為xkm/h4.5×6+2.5x=36解得x=3.6故答案為3.6點睛:本題為一次函數(shù)實際應用問題,考查一次函數(shù)圖象在實際背景下所代表的意義.解答這類問題時,也可以通過構(gòu)造方程解決問題.13、-1【解析】分析:解出不等式組的解集,與已知解集-1<x<1比較,可以求出a、b的值,然后相加求出2009次方,可得最終答案.詳解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案為-1.點睛:本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當作已知處理,求出解集與已知解集比較,進而求得零一個未知數(shù).14、5200【解析】設甲到學校的距離為x米,則乙到學校的距離為(3900+x),甲的速度為4y(米/分鐘),則乙的速度為3y(米/分鐘),依題意得:解得所以甲到學校距離為2400米,乙到學校距離為6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【點睛】本題考查一次函數(shù)的應用,二元一次方程組的應用等知識,解題的關(guān)鍵是讀懂圖象信息.15、【解析】

解:設E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為16、a<﹣1【解析】不等式(a+1)x>a+1兩邊都除以a+1,得其解集為x<1,∴a+1<0,解得:a<?1,故答案為a<?1.點睛:本題主要考查解一元一次不等式,解答此題的關(guān)鍵是掌握不等式的性質(zhì),再不等式兩邊同加或同減一個數(shù)或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個正數(shù)或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個負數(shù)或式子,不等號的方向改變.17、【解析】

首先根據(jù)算術(shù)平方根的定義計算先=2,再求2的算術(shù)平方根即可.【詳解】∵=2,∴的算術(shù)平方根為.【點睛】本題考查了算術(shù)平方根,屬于簡單題,熟悉算數(shù)平方根的概念是解題關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)50,10;(2)見解析.(3)16.8萬【解析】

(1)結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖中的參加“3科”課外輔導人數(shù)及百分比,求得總?cè)藬?shù)為50人;再由總?cè)藬?shù)減去參加“1科”,“2科”,“4科”課外輔導人數(shù)即可求出答案.(2)由(1)知在被調(diào)查者中參加“3科”課外輔導的有10人,由扇形統(tǒng)計圖可知參加“4科”課外輔導人數(shù)占比為10%,故參加“4科”課外輔導人數(shù)的有5人.(3)因為參加“1科”和“2科”課外輔導人數(shù)占比為,所以全市參與輔導科目不多于2科的人數(shù)為24×=16.8(萬).【詳解】解:(1)本次被調(diào)查的學員共有:15÷30%=50(人),在被調(diào)查者中參加“3科”課外輔導的有:50﹣15﹣20﹣50×10%=10(人),故答案為50,10;(2)由(1)知在被調(diào)查者中參加“3科”課外輔導的有10人,在被調(diào)查者中參加“4科”課外輔導的有:50×10%=5(人),補全的條形統(tǒng)計圖如右圖所示;(3)24×=16.8(萬),答:參與輔導科目不多于2科的學生大約有16.8人.【點睛】本題考察了條形統(tǒng)計圖和扇形統(tǒng)計圖,關(guān)鍵在于將兩者結(jié)合起來解題.19、4+2.【解析】

原式第一項利用負指數(shù)冪法則計算,第二項利用零指數(shù)冪法則計算,第三項化為最簡二次根式,最后一項利用特殊角的三角函數(shù)值計算即可得到結(jié)果.【詳解】原式=3+1+3-2×=4+2.20、見解析【解析】試題分析:已知AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠B=∠ECD,再根據(jù)SAS證明△ABC≌△ECD全,由全等三角形對應邊相等即可得AC=ED.試題解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.考點:平行線的性質(zhì);全等三角形的判定及性質(zhì).21、2【解析】試題分析:過O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點,由AE+EB求出直徑AB的長,進而確定出半徑OA與OD的長,由OA﹣AE求出OE的長,在直角三角形OEF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,在直角三角形ODF中,利用勾股定理求出DF的長,由CD=2DF即可求出CD的長.試題解析:過O作OF⊥CD,交CD于點F,連接OD,∴F為CD的中點,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根據(jù)勾股定理得:DF=OD2-O則CD=2DF=215.考點:垂徑定理;勾股定理.22、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).【解析】試題分析:(1)將點A、點C的坐標代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點M的坐標;(2)點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90°,則若△PCM與△BCD相似,則要進行分類討論,分成△PCM∽△BDC或△PCM∽△CDB兩種,然后利用邊的對應比值求出點坐標.試題解析:(1)把點A(3,1),點C(0,4)代入二次函數(shù)y=﹣x2+bx+c得,解得∴二次函數(shù)解析式為y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴點M的坐標為(1,5);(2)設直線AC解析式為y=kx+b,把點A(3,1),C(0,4)代入得,解得:∴直線AC的解析式為y=﹣x+4,如圖所示,對稱軸直線x=1與△ABC兩邊分別交于點E、點F把x=1代入直線AC解析式y(tǒng)=﹣x+4解得y=3,則點E坐標為(1,3),點F坐標為(1,1)∴1<5﹣m<3,解得2<m<4;(3)連接MC,作MG⊥y軸并延長交AC于點N,則點G坐標為(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,則點N坐標為(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若點P在AC上,則∠MCP=90°,則點D與點C必為相似三角形對應點①若有△PCM∽△BDC,則有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若點P在y軸右側(cè),作PH⊥y軸,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若點P在y軸左側(cè),則把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,則有∴CP==3∴PH=3÷=3,若點P在y軸右側(cè),把x=3代入y=﹣x+4,解得y=1;若點P在y軸左側(cè),把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合題意得點P坐標有4個,分別為P1(),P2(),P3(3,1),P4(﹣3,7).考點:二次函數(shù)綜合題23、(1)小強的頭部點E與地面DK的距離約為144.5cm.(2)他應向前9.5cm.【解析】試題分析:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.求出MF、FN的值即可解決問題;(2)求出OH、PH的值即可判斷;試題解析:解:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.∵EF+FG=166,F(xiàn)G=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此時小強頭部E點與地面DK相距約為144.5cm.(2)過點E作E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論