2023-2024學(xué)年湖南省學(xué)海大聯(lián)考高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年湖南省學(xué)海大聯(lián)考高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年湖南省學(xué)海大聯(lián)考高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年湖南省學(xué)海大聯(lián)考高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年湖南省學(xué)海大聯(lián)考高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年湖南省學(xué)海大聯(lián)考高三(最后沖刺)數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元2.已知函數(shù)()的最小值為0,則()A. B. C. D.3.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.44.已知實數(shù)滿足,則的最小值為()A. B. C. D.5.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結(jié)論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值6.點在曲線上,過作軸垂線,設(shè)與曲線交于點,,且點的縱坐標(biāo)始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為()A.0 B.1 C.2 D.37.已知函數(shù)若恒成立,則實數(shù)的取值范圍是()A. B. C. D.8.已知是虛數(shù)單位,則()A. B. C. D.9.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立10.兩圓和相外切,且,則的最大值為()A. B.9 C. D.111.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.12.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,a=3,,B=2A,則cosA=_____.14.已知拋物線的焦點為,其準(zhǔn)線與坐標(biāo)軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.15.已知復(fù)數(shù)對應(yīng)的點位于第二象限,則實數(shù)的范圍為______.16.過且斜率為的直線交拋物線于兩點,為的焦點若的面積等于的面積的2倍,則的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識,高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機變量的分布列和期望18.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)當(dāng)時,求實數(shù)的取值范圍.19.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.20.(12分)已知函數(shù)(1)若,不等式的解集;(2)若,求實數(shù)的取值范圍.21.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點為,當(dāng)變化時,點構(gòu)成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.22.(10分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂?;(ⅱ)若,求的數(shù)學(xué)期望的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【詳解】設(shè)目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎(chǔ)知識解決實際問題,屬于基礎(chǔ)題.2、C【解析】

設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.3、C【解析】

由二項式系數(shù)性質(zhì),的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質(zhì),掌握二項式系數(shù)性質(zhì)是解題關(guān)鍵.4、A【解析】

所求的分母特征,利用變形構(gòu)造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當(dāng)且僅當(dāng)時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項、添項應(yīng)注意檢驗利用基本不等式的前提.5、B【解析】

根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.6、C【解析】

設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時,,則單調(diào)遞減;當(dāng)時,,則單調(diào)遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導(dǎo)函數(shù)處理零點問題,考查向量的坐標(biāo)運算,考查零點存在性定理的應(yīng)用.7、D【解析】

由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當(dāng)時,不符合題意,只須考慮的情形,當(dāng)與圖象相切于時,由導(dǎo)數(shù)幾何意義,此時,故.故選:D【點睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.8、B【解析】

根據(jù)復(fù)數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復(fù)數(shù)的乘法,熟記運算法則即可,屬于基礎(chǔ)題型.9、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.10、A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當(dāng)時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.11、D【解析】

根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,

,,,,,結(jié)束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.12、C【解析】

根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,注意函數(shù)奇偶性的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.14、【解析】

求出拋物線焦點坐標(biāo),由,結(jié)合向量的坐標(biāo)運算得,直線方程為,代入拋物線方程后應(yīng)用韋達(dá)定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標(biāo)表示.直線方程與拋物線方程聯(lián)立后消元,應(yīng)用韋達(dá)定理是解決直線與拋物線相交問題的常用方法.15、【解析】

由復(fù)數(shù)對應(yīng)的點,在第二象限,得,且,從而求出實數(shù)的范圍.【詳解】解:∵復(fù)數(shù)對應(yīng)的點位于第二象限,∴,且,∴,故答案為:.【點睛】本題主要考查復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.16、2【解析】

聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點睛】此題考查了拋物線的性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)分布列見解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點睛】本題主要考查古典概型的計算,考查隨機變量的分布列和期望的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、(1)(2)當(dāng)時,的取值范圍為;當(dāng)時,的取值范圍為.【解析】

(1)當(dāng)時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當(dāng)且僅當(dāng)時,取“”,分類討論,即可求解.【詳解】(1)當(dāng)時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當(dāng)且僅當(dāng)時,取“”,所以當(dāng)時,的取值范圍為;當(dāng)時,的取值范圍為.【點睛】本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等式的應(yīng)用,其中解答中熟記含絕對值不等式的解法,以及合理應(yīng)用絕對值的三角不等式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、(1)(2)【解析】

分析:(1)利用正弦定理以及誘導(dǎo)公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點,則,在中,,(注:也可將兩邊平方)即,,所以,當(dāng)且僅當(dāng)時取等號.此時,其最大值為.點睛:該題考查的是有關(guān)三角形的問題,涉及到的知識點有正弦定理,誘導(dǎo)公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關(guān)的公式進(jìn)行運算即可求得結(jié)果.20、(1)(2)【解析】

(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據(jù)絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當(dāng)時,原不等式等價于,解得當(dāng)時,原不等式等價于,解得,所以;當(dāng)時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點睛】本題考查絕對值不等式的解法,著重考查等價轉(zhuǎn)化思想與分類討論思想的綜合應(yīng)用,屬于中檔題.21、(1);(2)證明見解析【解析】

(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點,即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時,;時,,即時,;時,,時,單調(diào)遞減;時,單調(diào)遞增,時,取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點,則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當(dāng)時,恒成立,在上單調(diào)遞增.,,,存在滿足時,使得.又單調(diào)遞增,所以為唯一解.②當(dāng)時,二次函數(shù),滿足,則恒成立,在上單調(diào)遞增.,,存在使得,又在上單調(diào)遞增,為唯一解.③當(dāng)時,二次函數(shù),滿足,此時有兩個不同的解,不妨設(shè),,,列表如下:00↗極大值↘極小值↗由表可知,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論