山西省大同一中等2023-2024學年高考考前提分數學仿真卷含解析_第1頁
山西省大同一中等2023-2024學年高考考前提分數學仿真卷含解析_第2頁
山西省大同一中等2023-2024學年高考考前提分數學仿真卷含解析_第3頁
山西省大同一中等2023-2024學年高考考前提分數學仿真卷含解析_第4頁
山西省大同一中等2023-2024學年高考考前提分數學仿真卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省大同一中等2023-2024學年高考考前提分數學仿真卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.2.已知是虛數單位,若,則()A. B.2 C. D.33.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.5.設i為虛數單位,若復數,則復數z等于()A. B. C. D.06.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.77.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.8.已知的展開式中的常數項為8,則實數()A.2 B.-2 C.-3 D.39.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.10.若不等式在區(qū)間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.11.已知角的終邊經過點,則A. B.C. D.12.設函數,當時,,則()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數為_______(用數字作答).14.若的展開式中只有第六項的二項式系數最大,則展開式中各項的系數和是________.15.已知,則______,______.16.若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,解不等式;(2)當時,不等式恒成立,求實數的取值范圍.18.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.19.(12分)我們稱n()元有序實數組(,,…,)為n維向量,為該向量的范數.已知n維向量,其中,,2,…,n.記范數為奇數的n維向量的個數為,這個向量的范數之和為.(1)求和的值;(2)當n為偶數時,求,(用n表示).20.(12分)已知在平面直角坐標系中,曲線的參數方程為(為參數.).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標方程與點的極坐標;(2)已知直線的直角坐標方程為,直線與曲線相交于點(異于原點),求的面積.21.(12分)已知函數,,且.(1)當時,求函數的減區(qū)間;(2)求證:方程有兩個不相等的實數根;(3)若方程的兩個實數根是,試比較,與的大小,并說明理由.22.(10分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,直線極坐標方程為.若直線交曲線于,兩點,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數形結合的數學思想方法,屬于中檔題.2、A【解析】

直接將兩邊同時乘以求出復數,再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數的運算及其模的求法,是基礎題.3、C【解析】

由余弦函數的單調性找出的等價條件為,再利用大角對大邊,結合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數在區(qū)間上單調遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點睛】本題考查充分必要條件的判定,同時也考查了余弦函數的單調性、大角對大邊以及正弦定理的應用,考查推理能力,屬于中等題.4、A【解析】

設橢圓的半長軸長為,雙曲線的半長軸長為,根據橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.5、B【解析】

根據復數除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復數的代數運算,屬于基礎題.6、B【解析】

在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【詳解】在等差數列的前項和為,則則故選:B【點睛】本題考查等差數列中求由已知關系求公差,屬于基礎題.7、D【解析】

先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.8、A【解析】

先求的展開式,再分類分析中用哪一項與相乘,將所有結果為常數的相加,即為展開式的常數項,從而求出的值.【詳解】展開式的通項為,當取2時,常數項為,當取時,常數項為由題知,則.故選:A.【點睛】本題考查了兩個二項式乘積的展開式中的系數問題,其中對所取的項要進行分類討論,屬于基礎題.9、B【解析】

根據函數單調性逐項判斷即可【詳解】對A,由正弦函數的單調性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數,且a>b,所以ca>cb,正確對C,因為y=xc為增函數,故,錯誤;對D,因為在為減函數,故,錯誤故選B.【點睛】本題考查了不等式的基本性質以及指數函數的單調性,屬基礎題.10、C【解析】

由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區(qū)間內的解集中有且僅有三個整數,轉化為在區(qū)間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.11、D【解析】因為角的終邊經過點,所以,則,即.故選D.12、A【解析】

由降冪公式,兩角和的正弦公式化函數為一個角的一個三角函數形式,然后由正弦函數性質求得參數值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數性質,掌握正弦函數性質是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】

根據二項式定理展開式通項,即可求得的系數.【詳解】因為,所以,則所求項的系數為.故答案為:60【點睛】本題考查了二項展開式通項公式的應用,指定項系數的求法,屬于基礎題.14、【解析】

由題意得出展開式中共有11項,;再令求得展開式中各項的系數和.【詳解】由的展開式中只有第六項的二項式系數最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數和的求法,屬于基礎題.15、【解析】

利用兩角和的正切公式結合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結合弦化切思想求出和的值,進而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.【點睛】本題主要考查三角函數值的計算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應用,難度不大.16、【解析】

由,得出,根據兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)分類討論去絕對值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對值,轉化為在時恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當時,,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因為,,所以,又,,,得.不等式恒成立,即在時恒成立,不等式恒成立必須,,解得.所以,解得,結合,所以,即的取值范圍為.【點睛】本題考查分類討論解絕對值不等式,含有絕對值的不等式的恒成立問題.屬于中檔題.18、(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關鍵是證明線線平行,一般構造平行四邊形,則對邊平行,或是構造三角形中位線.19、(1),.(2),【解析】

(1)利用枚舉法將范數為奇數的二元有序實數對都寫出來,再做和;(2)用組合數表示和,再由公式或將組合數進行化簡,得出最終結果.【詳解】解:(1)范數為奇數的二元有序實數對有:,,,,它們的范數依次為1,1,1,1,故,.(2)當n為偶數時,在向量的n個坐標中,要使得范數為奇數,則0的個數一定是奇數,所以可按照含0個數為:1,3,…,進行討論:的n個坐標中含1個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含3個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含個0,其余坐標為1或,共有個,每個的范數為1;所以,.因為,①,②得,,所以.解法1:因為,所以..解法2:得,.又因為,所以.【點睛】本題考查了數列和組合,是一道較難的綜合題.20、(1)極坐標方程為,點的極坐標為(2)【解析】

(1)利用極坐標方程、普通方程、參數方程間的互化公式即可;(2)只需算出A、B兩點的極坐標,利用計算即可.【詳解】(1)曲線C:(為參數,),將代入,解得,即曲線的極坐標方程為,點的極坐標為.(2)由(1),得點的極坐標為,由直線過原點且傾斜角為,知點的極坐標為,.【點睛】本題考查極坐標方程、普通方程、參數方程間的互化以及利用極徑求三角形面積,考查學生的運算能力,是一道基礎題.21、(1)(2)詳見解析(3)【解析】

試題分析:(1)當時,,由得減區(qū)間;(2)因為,所以,因為所以,方程有兩個不相等的實數根;(3)因為,,所以試題解析:(1)當時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實數根;法2:,,是開口向上的二次函數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論