版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇新沂一中2023-2024學(xué)年高三下學(xué)期一??荚嚁?shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.記個(gè)兩兩無(wú)交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間2.點(diǎn)為棱長(zhǎng)是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度為()A. B. C. D.3.如圖,在平行四邊形中,對(duì)角線與交于點(diǎn),且,則()A. B.C. D.4.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.5.如下的程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.156.已知,則()A. B. C. D.7.已知橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線交橢圓于A,B兩點(diǎn),交y軸于點(diǎn)M,若、M是線段AB的三等分點(diǎn),則橢圓的離心率為()A. B. C. D.8.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.9.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則()A. B. C. D.10.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.11.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r(shí),()A. B.2 C. D.12.已知數(shù)列滿足,(),則數(shù)列的通項(xiàng)公式()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則的最小值為_(kāi)_______.14.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點(diǎn),則的面積為_(kāi)________15.已知向量與的夾角為,||=||=1,且⊥(λ),則實(shí)數(shù)_____.16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差________,通項(xiàng)公式________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)只有一個(gè)零點(diǎn),求正實(shí)數(shù)的值.18.(12分)如圖,在直角中,,通過(guò)以直線為軸順時(shí)針旋轉(zhuǎn)得到().點(diǎn)為斜邊上一點(diǎn).點(diǎn)為線段上一點(diǎn),且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時(shí),求二面角的正弦值.19.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,建立極坐標(biāo)系,判斷直線為參數(shù))與圓的位置關(guān)系.20.(12分)為了解廣大學(xué)生家長(zhǎng)對(duì)校園食品安全的認(rèn)識(shí),某市食品安全檢測(cè)部門(mén)對(duì)該市家長(zhǎng)進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識(shí)問(wèn)卷調(diào)查,每一位學(xué)生家長(zhǎng)僅有一次參加機(jī)會(huì),現(xiàn)對(duì)有效問(wèn)卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計(jì)這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).(1)請(qǐng)利用正態(tài)分布的知識(shí)求;(2)該市食品安全檢測(cè)部門(mén)為此次參加問(wèn)卷調(diào)查的學(xué)生家長(zhǎng)制定如下獎(jiǎng)勵(lì)方案:①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi):②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)概率市食品安全檢測(cè)部門(mén)預(yù)計(jì)參加此次活動(dòng)的家長(zhǎng)約5000人,請(qǐng)依據(jù)以上數(shù)據(jù)估計(jì)此次活動(dòng)可能贈(zèng)送出多少話費(fèi)?附:①;②若;則,,.21.(12分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.22.(10分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點(diǎn)P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫(huà)出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題2、C【解析】
設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長(zhǎng)度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長(zhǎng)為2,所以?xún)?nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長(zhǎng)度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問(wèn)題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.3、C【解析】
畫(huà)出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫(huà)出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問(wèn)題(1)只要兩個(gè)向量不共線,就可以作為平面的一組基底,基底可以有無(wú)窮多組,在解決具體問(wèn)題時(shí),合理選擇基底會(huì)給解題帶來(lái)方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.4、C【解析】
根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.故選:C.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.5、A【解析】
根據(jù)題意可知最后計(jì)算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計(jì)算的結(jié)果為的最大公約數(shù),按流程圖計(jì)算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點(diǎn)睛】本題考查的是利用更相減損術(shù)求兩個(gè)數(shù)的最大公約數(shù),難度較易.6、C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號(hào).7、D【解析】
根據(jù)題意,求得的坐標(biāo),根據(jù)點(diǎn)在橢圓上,點(diǎn)的坐標(biāo)滿足橢圓方程,即可求得結(jié)果.【詳解】由已知可知,點(diǎn)為中點(diǎn),為中點(diǎn),故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點(diǎn)的坐標(biāo)為,則,易知點(diǎn)坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程得,所以離心率為,故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,難點(diǎn)在于根據(jù)題意求得點(diǎn)的坐標(biāo),屬中檔題.8、D【解析】
設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計(jì)算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點(diǎn)睛】本題考查圓錐的體積的計(jì)算,涉及到圓錐的定義,是一道容易題.9、A【解析】
由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)定義、二倍角公式,考查計(jì)算求解能力,屬于基礎(chǔ)題.10、D【解析】
先判斷函數(shù)在時(shí)的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個(gè)數(shù)的大小,然后根據(jù)函數(shù)在時(shí)的單調(diào)性,比較出三個(gè)數(shù)的大小.【詳解】當(dāng)時(shí),,函數(shù)在時(shí),是增函數(shù).因?yàn)?,所以函?shù)是奇函數(shù),所以有,因?yàn)?,函?shù)在時(shí),是增函數(shù),所以,故本題選D.【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問(wèn)題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.11、B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗裕?,?dāng)時(shí),等號(hào)成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.12、A【解析】
利用數(shù)列的遞推關(guān)系式,通過(guò)累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項(xiàng)公式的求法,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號(hào)取得的條件。【詳解】由題意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最小值.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件。14、【解析】
根據(jù)題意畫(huà)出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于基礎(chǔ)題.15、1【解析】
根據(jù)條件即可得出,由即可得出,進(jìn)行數(shù)量積的運(yùn)算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點(diǎn)睛】考查向量數(shù)量積的運(yùn)算及計(jì)算公式,以及向量垂直的充要條件.16、2【解析】
直接利用等差數(shù)列公式計(jì)算得到答案.【詳解】,,解得,,故.故答案為:2;.【點(diǎn)睛】本題考查了等差數(shù)列的基本計(jì)算,意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】
(1)把轉(zhuǎn)化成,令,由題意得,即證明恒成立,通過(guò)導(dǎo)數(shù)求證即可(2)直接求導(dǎo)可得,,令,得或,故根據(jù)0與的大小關(guān)系來(lái)進(jìn)行分類(lèi)討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當(dāng)時(shí),.所以,即,所以.所以當(dāng)時(shí),.解:(2)因?yàn)?,所?討論:①當(dāng)時(shí),,此時(shí)函數(shù)在區(qū)間上單調(diào)遞減.又,故此時(shí)函數(shù)僅有一個(gè)零點(diǎn)為0;②當(dāng)時(shí),令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當(dāng)時(shí),有.又,此時(shí),故當(dāng)時(shí),函數(shù)還有一個(gè)零點(diǎn),不符合題意;③當(dāng)時(shí),令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當(dāng)且時(shí),,故此時(shí)函數(shù)還有一個(gè)零點(diǎn),不符合題意.綜上,所求實(shí)數(shù)的值為.【點(diǎn)睛】本題考查不等式的恒成立問(wèn)題和函數(shù)的零點(diǎn)問(wèn)題,本題的難點(diǎn)在于把導(dǎo)數(shù)化成因式分解的形式,如,進(jìn)而分類(lèi)討論,本題屬于難題18、(1)見(jiàn)解析;(2)【解析】
(1)先算出的長(zhǎng)度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應(yīng)最小,可得為中點(diǎn),然后建系分別求出平面的法向量即可算得二面角的余弦值,進(jìn)一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標(biāo)原點(diǎn),以,,的方向?yàn)?,,軸的正方向,建立空間直角坐標(biāo)系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時(shí),即,點(diǎn)為中點(diǎn).,,,,,,,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.19、直線與圓C相切.【解析】
首先把直線和圓轉(zhuǎn)換為直角坐標(biāo)方程,進(jìn)一步利用點(diǎn)到直線的距離的應(yīng)用求出直線和圓的位置關(guān)系.【詳解】直線為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為.圓轉(zhuǎn)換為直角坐標(biāo)方程為,轉(zhuǎn)換為標(biāo)準(zhǔn)形式為,所以圓心到直線,的距離.直線與圓C相切.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,直線與圓的位置關(guān)系式的應(yīng)用,點(diǎn)到直線的距離公式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.20、(1);(2)估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi)【解析】
(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長(zhǎng)參加活動(dòng)可獲贈(zèng)話費(fèi)為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計(jì)此次活動(dòng)可能贈(zèng)送出的話費(fèi)數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計(jì)表,結(jié)合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長(zhǎng)參加活動(dòng)可獲贈(zèng)話費(fèi)的可能值有10,20,30,40元,且每位家長(zhǎng)獲得贈(zèng)送1次、2次話費(fèi)的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費(fèi);得分不低于平均值,2次均獲贈(zèng)10元話費(fèi),概率,得30元的情況為:得分不低于平均值,一次獲贈(zèng)10元話費(fèi),另一次獲贈(zèng)20元話費(fèi),其概率為,得40元的其情況得分不低于平均值,兩次機(jī)會(huì)均獲20元話費(fèi),概率為.所以變量的分布列為:某家長(zhǎng)獲贈(zèng)話費(fèi)的期望為.所以估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi).【點(diǎn)睛】本題考查正態(tài)分布、離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,注意與正態(tài)分布有關(guān)的計(jì)算要利用該分布的密度函數(shù)圖象的對(duì)稱(chēng)性來(lái)進(jìn)行,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度酒廠電子商務(wù)平臺(tái)建設(shè)合同
- 2025年度高端品牌形象設(shè)計(jì)顧問(wèn)聘請(qǐng)合同書(shū)2篇
- 二零二五年度環(huán)保工程公司股東股權(quán)變更與項(xiàng)目執(zhí)行合同
- 二零二五年度出口產(chǎn)品購(gòu)銷(xiāo)合同樣本知識(shí)產(chǎn)權(quán)保護(hù)策略4篇
- 二零二五年度學(xué)長(zhǎng)的讀書(shū)心得分享及輔導(dǎo)服務(wù)合同3篇
- 二零二五年度會(huì)議場(chǎng)所租賃合同服務(wù)標(biāo)準(zhǔn)2篇
- 2025年度借款居間服務(wù)合同風(fēng)險(xiǎn)評(píng)估與管理3篇
- 2025年度地暖系統(tǒng)安裝與調(diào)試服務(wù)合同
- 2025年內(nèi)河水路運(yùn)輸貨物包裝及防損合同范本4篇
- 2025年度股東出資協(xié)議書(shū)合同:網(wǎng)絡(luò)安全技術(shù)研發(fā)與應(yīng)用股權(quán)合作協(xié)議
- 2024年人教版小學(xué)三年級(jí)信息技術(shù)(下冊(cè))期末試卷附答案
- TB 10012-2019 鐵路工程地質(zhì)勘察規(guī)范
- 新蘇教版三年級(jí)下冊(cè)科學(xué)全冊(cè)知識(shí)點(diǎn)(背誦用)
- 鄉(xiāng)鎮(zhèn)風(fēng)控維穩(wěn)應(yīng)急預(yù)案演練
- 腦梗死合并癲癇病人的護(hù)理查房
- 蘇教版四年級(jí)上冊(cè)脫式計(jì)算300題及答案
- 犯罪現(xiàn)場(chǎng)保護(hù)培訓(xùn)課件
- 扣款通知單 采購(gòu)部
- 電除顫操作流程圖
- 湖北教育出版社三年級(jí)下冊(cè)信息技術(shù)教案
- 設(shè)計(jì)基礎(chǔ)全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論