版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省磐石市吉昌中學2024年中考數(shù)學仿真試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是二次函數(shù)y=ax2+bx+c的圖象,有下列結(jié)論:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個2.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.3.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對4.如圖,AB∥CD,那么()A.∠BAD與∠B互補 B.∠1=∠2 C.∠BAD與∠D互補 D.∠BCD與∠D互補5.不等式組的解集在數(shù)軸上表示正確的是()A. B. C. D.6.如果,那么代數(shù)式的值是()A.6 B.2 C.-2 D.-67.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1398.如圖所示,把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,如果折疊后得等腰△EBA,那么結(jié)論中:①∠A=30°;②點C與AB的中點重合;③點E到AB的距離等于CE的長,正確的個數(shù)是()A.0 B.1 C.2 D.39.觀察圖中的“品”字形中個數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為A.75 B.89 C.103 D.13910.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形11.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm12.為了增強學生體質(zhì),學校發(fā)起評選“健步達人”活動,小明用計步器記錄自己一個月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計表:步數(shù)(萬步)1.01.21.11.41.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,小聰把一塊含有60°角的直角三角板的兩個頂點放在直尺的對邊上,并測得∠1=25°,則∠2的度數(shù)是_____.14.分解因式:4ax2-ay2=________________.15.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構(gòu)成的圖形的面積為__________.16.我國自主研發(fā)的某型號手機處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學記數(shù)法可表示為_____m.17.如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為3,則k的值為_____.18.若有意義,則x的范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知BD平分∠ABF,且交AE于點D.(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)設(shè)AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.20.(6分)科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應(yīng)沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B、C兩地的距離(結(jié)果保留整數(shù))(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)21.(6分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.(1)根據(jù)圖中所給信息填寫下表:投中個數(shù)統(tǒng)計平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應(yīng)該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.22.(8分)如下表所示,有A、B兩組數(shù):第1個數(shù)第2個數(shù)第3個數(shù)第4個數(shù)……第9個數(shù)……第n個數(shù)A組﹣6﹣5﹣2……58……n2﹣2n﹣5B組14710……25……(1)A組第4個數(shù)是;用含n的代數(shù)式表示B組第n個數(shù)是,并簡述理由;在這兩組數(shù)中,是否存在同一列上的兩個數(shù)相等,請說明.23.(8分)(1)計算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化簡,再求值?(a2﹣b2),其中a=,b=﹣2.24.(10分)如圖所示,點P位于等邊△ABC的內(nèi)部,且∠ACP=∠CBP.(1)∠BPC的度數(shù)為________°;(2)延長BP至點D,使得PD=PC,連接AD,CD.①依題意,補全圖形;②證明:AD+CD=BD;(3)在(2)的條件下,若BD的長為2,求四邊形ABCD的面積.25.(10分)如圖,在?ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,延長BA與⊙O相交于點F.若的長為,則圖中陰影部分的面積為_____.26.(12分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.27.(12分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點判斷c與1的關(guān)系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結(jié)論進行判斷.【詳解】解:①根據(jù)圖示知,該函數(shù)圖象的開口向上,∴a>1;該函數(shù)圖象交于y軸的負半軸,∴c<1;故①正確;②對稱軸∴∴b<1;故②正確;③根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以,即,故③錯誤④故本選項正確.正確的有3項故選C.【點睛】本題考查二次函數(shù)的圖象與系數(shù)的關(guān)系.二次項系數(shù)決定了開口方向,一次項系數(shù)和二次項系數(shù)共同決定了對稱軸的位置,常數(shù)項決定了與軸的交點位置.2、C【解析】
根據(jù)題意可以寫出y關(guān)于x的函數(shù)關(guān)系式,然后令x=40求出相應(yīng)的y值,即可解答本題.【詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【點睛】本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關(guān)鍵.3、B【解析】
解方程得:x=5或x=1.當x=1時,3+4=1,不能組成三角形;當x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.4、C【解析】
分清截線和被截線,根據(jù)平行線的性質(zhì)進行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補,即C選項符合題意;當AD∥BC時,∠BAD與∠B互補,∠1=∠2,∠BCD與∠D互補,故選項A、B、D都不合題意,故選:C.【點睛】本題考查了平行線的性質(zhì),熟記性質(zhì)并準確識圖是解題的關(guān)鍵.5、A【解析】分析:分別求出各不等式的解集,再求出其公共解集并在數(shù)軸上表示出來,選出符合條件的選項即可.詳解:由①得,x≤1,由②得,x>-1,故此不等式組的解集為:-1<x≤1.在數(shù)軸上表示為:故選A.點睛:本題考查的是在數(shù)軸上表示一元一此不等式組的解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.6、A【解析】【分析】將所求代數(shù)式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數(shù)式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關(guān)鍵.7、B【解析】
由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關(guān)鍵.8、D【解析】
根據(jù)翻折變換的性質(zhì)分別得出對應(yīng)角相等以及利用等腰三角形的性質(zhì)判斷得出即可.【詳解】∵把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,折疊后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①選項正確;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②選項正確;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分線上的點到角的兩邊距離相等),∴點E到AB的距離等于CE的長,故③選項正確,故正確的有3個.故選D.【點睛】此題主要考查了翻折變換的性質(zhì)以及角平分線的性質(zhì)和等腰三角形的性質(zhì)等知識,利用折疊前后對應(yīng)角相等是解題關(guān)鍵.9、A【解析】觀察可得,上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,所以b=26=64,又因上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),所以a=11+64=75,故選B.10、D【解析】
連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等邊三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴C正確;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正確.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D錯誤.
故選D.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.11、D【解析】
過A作AD⊥BF于D,根據(jù)45°角的三角函數(shù)值可求出AB的長度,根據(jù)含30°角的直角三角形的性質(zhì)求出斜邊AC的長即可.【詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點睛】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數(shù)值是解題關(guān)鍵.12、B【解析】
在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個兩個數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、35°【解析】分析:先根據(jù)兩直線平行,內(nèi)錯角相等求出∠3,再根據(jù)直角三角形的性質(zhì)用∠2=60°-∠3代入數(shù)據(jù)進行計算即可得解.詳解:∵直尺的兩邊互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案為35°.點睛:本題考查了平行線的性質(zhì),三角板的知識,熟記平行線的性質(zhì)是解題的關(guān)鍵.14、a(2x+y)(2x-y)【解析】
首先提取公因式a,再利用平方差進行分解即可.【詳解】原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案為a(2x+y)(2x-y).【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.15、12.2【解析】
∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構(gòu)成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.16、1×10﹣1【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:10nm用科學記數(shù)法可表示為1×10-1m,
故答案為1×10-1.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.17、.【解析】
由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據(jù)點D為OB的中點,得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設(shè)A(x,),從而表示出梯形BOCA的面積關(guān)于k的等式,求解即可.【詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點A在雙曲線y=的第一象限的那一支上,∴設(shè)A點坐標為(x,).∵OC=2AB,∴OC=2x.∵點D為OB的中點,∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【點睛】反比例函數(shù)綜合題,曲線上點的坐標與方程的關(guān)系,相似三角形的判定和性質(zhì),同底三角形面積的計算,梯形中位線的性質(zhì).18、x≤1.【解析】
根據(jù)二次根式有意義的條件、分式有意義的條件列出不等式,解不等式即可.【詳解】依題意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【點睛】本題主要考查了二次根式和分式有意義的條件,關(guān)鍵是掌握二次根式中的被開方數(shù)必須是非負數(shù),分式有意義的條件是分母不等于零.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析:(2)見解析.【解析】試題分析:(1)根據(jù)角平分線的作法作出∠BAE的平分線AP即可;(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.試題解析:(1)如圖所示:(2)如圖:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.考點:1.菱形的判定;2.作圖—基本作圖.20、B、C兩地的距離大約是6千米.【解析】
過B作BD⊥AC于點D,在直角△ABD中利用三角函數(shù)求得BD的長,然后在直角△BCD中利用三角函數(shù)求得BC的長.【詳解】解:過B作于點D.在中,千米,中,,千米,千米.答:B、C兩地的距離大約是6千米.【點睛】此題考查了方向角問題.此題難度適中,解此題的關(guān)鍵是將方向角問題轉(zhuǎn)化為解直角三角形的知識,利用三角函數(shù)的知識求解.21、(1)7,9,7;(2)應(yīng)該選派B;【解析】
(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應(yīng)該選派B.【點睛】此題主要考查了中位數(shù)、眾數(shù)、方差的定義,方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.22、(1)3;(2),理由見解析;理由見解析(3)不存在,理由見解析【解析】
(1)將n=4代入n2-2n-5中即可求解;(2)當n=1,2,3,…,9,…,時對應(yīng)的數(shù)分別為3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可歸納出第n個數(shù)是3n-2;(3)“在這兩組數(shù)中,是否存在同一列上的兩個數(shù)相等”,將問題轉(zhuǎn)換為n2-2n-5=3n-2有無正整數(shù)解的問題.【詳解】解:(1))∵A組第n個數(shù)為n2-2n-5,∴A組第4個數(shù)是42-2×4-5=3,故答案為3;(2)第n個數(shù)是.理由如下:∵第1個數(shù)為1,可寫成3×1-2;第2個數(shù)為4,可寫成3×2-2;第3個數(shù)為7,可寫成3×3-2;第4個數(shù)為10,可寫成3×4-2;……第9個數(shù)為25,可寫成3×9-2;∴第n個數(shù)為3n-2;故答案為3n-2;(3)不存在同一位置上存在兩個數(shù)據(jù)相等;由題意得,,解之得,由于是正整數(shù),所以不存在列上兩個數(shù)相等.【點睛】本題考查了數(shù)字的變化類,正確的找出規(guī)律是解題的關(guān)鍵.23、(1)-2(2)-【解析】試題分析:(1)將原式第一項被開方數(shù)8變?yōu)?×2,利用二次根式的性質(zhì)化簡第二項利用特殊角的三角函數(shù)值化簡,第三項利用零指數(shù)公式化簡,最后一項利用負指數(shù)公式化簡,把所得的結(jié)果合并即可得到最后結(jié)果;(2)先把和a2﹣b2分解因式約分化簡,然后將a和b的值代入化簡后的式子中計算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)?(a2﹣b2)=?(a+b)(a﹣b)=a+b,當a=,b=﹣2時,原式=+(﹣2)=﹣.24、(1)120°;(2)①作圖見解析;②證明見解析;(3)3.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì),可知∠ACB=60°,在△BCP中,利用三角形內(nèi)角和定理即可得;(2)①根據(jù)題意補全圖形即可;②證明△ACD≌△BCP,根據(jù)全等三角形的對應(yīng)邊相等可得AD(3)如圖2,作BM⊥AD于點M,BN⊥DC延長線于點N,根據(jù)已知可推導得出BM=【詳解】(1)∵三角形ABC是等邊三角形,∴∠ACB=60°,即∠ACP+∠BCP=60°,∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,∴∠BPC=120°,故答案為120;(2)①∵如圖1所示.②在等邊△ABC中,∠ACB∴∠ACP+∵∠ACP=∴∠CBP+∴∠BPC=180°-∴∠CPD=180°-∵PD=∴△CDP∵∠ACD+∴∠ACD在△ACD和△AC=BC??∴△ACD∴AD=∴AD+(3)如圖2,作BM⊥AD于點M,BN⊥∵∠ADB=∴∠ADB=∴∠ADB=∴BM=又由(2)得,AD+∴S四邊形ABCD==32×2【點睛】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握相關(guān)性質(zhì)定理、正確添加輔助線是解題的關(guān)鍵.25、S陰影=2﹣.【解析】
由切線的性質(zhì)和平行四邊形的性質(zhì)得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根據(jù)弧長公式求出弧長,得到半徑,即可求出結(jié)果.【詳解】如圖,連接AC,∵CD與⊙A相切,∴CD⊥AC,在平行四邊形ABCD中,∵AB=DC,AB∥CD∥BC,∴BA⊥AC,∵AB=AC,∴∠ACB=∠B=45°,∵AD∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE,∴∴的長度為解得R=2,S陰=S△ACD-S扇形=【點睛】此題主要考查圓內(nèi)的面積計算,解題的關(guān)鍵是熟知平行四邊形的性質(zhì)、切線的性質(zhì)、弧長計算及扇形面積的計算.26、(1)見解析;(2).【解析】
(1)直接利用直角三角形的性質(zhì)得出,再利用DE∥BC,得出∠2=∠3,進而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的長,進而得出EC的長.【詳解】(1)證明:∵AD⊥DB,點E為AB的中點,∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【點睛】此題主要考查了直角三角形斜邊上的中線與斜邊的關(guān)系,正確得出DB,DE的長是解題關(guān)鍵.27、(1)見解析;(2)見解析;(3)AB=1【解析】
(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 花字課件教學課件
- 吸墨白板課件教學課件
- 2024固定資產(chǎn)業(yè)權(quán)轉(zhuǎn)讓合同
- 2024年店鋪買賣與租賃合同一本通
- 2024年廣告裝飾新篇章:工程合同全新范本
- 2024年辦公室裝修設(shè)計實施合同
- 2024年度供應(yīng)鏈管理合同與物流服務(wù)協(xié)議
- 2024年工程項目人力資源配置與管理合同
- 2024光伏發(fā)電設(shè)備采購合同
- 銀行業(yè)信息系統(tǒng)災(zāi)難恢復管理規(guī)范
- 醫(yī)院重點崗位工作人員輪崗制度
- 2023光伏發(fā)電工程項目安全文明施工方案
- 帶式輸送機膠帶安裝
- 陳育民對FLAC3D常見問題的解答概要
- 專利文獻檢索方法與步驟課件
- 第5講-申論大作文課件
- 大咯血的護理及急救課件
- 讀《學生的精神》有感
- Module 5 Museums模塊測試題二(含答案)(外研版九年級上冊)
- 張家爺爺?shù)男』ü?
評論
0/150
提交評論