《高等數(shù)學(xué)》標(biāo)準(zhǔn)教案_第1頁
《高等數(shù)學(xué)》標(biāo)準(zhǔn)教案_第2頁
《高等數(shù)學(xué)》標(biāo)準(zhǔn)教案_第3頁
《高等數(shù)學(xué)》標(biāo)準(zhǔn)教案_第4頁
《高等數(shù)學(xué)》標(biāo)準(zhǔn)教案_第5頁
已閱讀5頁,還剩71頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高等數(shù)學(xué)教案課程名稱微積分初步授課專業(yè)、班級08工程造價課程類型專業(yè)基礎(chǔ)課課程學(xué)時數(shù)68課程學(xué)分?jǐn)?shù)4學(xué)分教材版本__《高等數(shù)學(xué)》孫偉主編___________考核方式考勤、理論、平時成績、期末考試授課教師授課時間08.09——08.12.3120082009學(xué)年第一學(xué)期………………………一、課程單元、章節(jié)第一章函數(shù)、極限與連續(xù)二、教學(xué)要求理解函數(shù)的概念,掌握函數(shù)的表示方法。了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性。理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。掌握基本初等函數(shù)的性質(zhì)及其圖形。會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。三、重點和難點1.重點:基本初等函數(shù)的性質(zhì)及其圖形2.難點:復(fù)合函數(shù)及分段函數(shù)的概念。四、教學(xué)進度:理解函數(shù)的概念,掌握函數(shù)的表示方法。1.了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性。2.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。3.掌握基本初等函數(shù)的性質(zhì)及其圖形。4.會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。五、課時數(shù)4六、教學(xué)方式:課堂講解,學(xué)生課堂課后練習(xí)七、作業(yè):教材第9頁1,3,4,7,10八、參考書籍:《應(yīng)用高等數(shù)學(xué)》上,翟向陽主編,上海交通大學(xué)出版社《高等數(shù)學(xué)》盛驟等編,浙江大學(xué)出版社九、教學(xué)小結(jié):本章的主要內(nèi)容在中學(xué)已講過,在教授時注意將以前所學(xué)的知識作系統(tǒng)的回顧,并作適當(dāng)?shù)募由?,使學(xué)生對初等函數(shù)形成比較完整的概念,為學(xué)習(xí)定積分奠定良好的基礎(chǔ)。學(xué)生對該章節(jié)的內(nèi)容反映較好。十、教學(xué)過程及內(nèi)容:§1.1函數(shù)1。1。1函數(shù)的概念①定義設(shè)SKIPIF1<0為點集,則映射SKIPIF1<0:SKIPIF1<0稱為定義在SKIPIF1<0上的函數(shù),記為SKIPIF1<0,SKIPIF1<0其中:SKIPIF1<0稱為函數(shù)的定義域,SKIPIF1<0稱為自變量,SKIPIF1<0稱為因變量。SKIPIF1<0稱為函數(shù)的值域。函數(shù)常用SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0等表示,如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0等。函數(shù)的定義域:使得表達式(算式)有意義的全體實數(shù)。如SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0集合SKIPIF1<0稱為函數(shù)SKIPIF1<0的圖形。②函數(shù)的參數(shù)變形(復(fù)習(xí))。例:SKIPIF1<0例:SKIPIF1<0③函數(shù)的圖像函數(shù)圖像的描繪。(描點法,舉例介紹)函數(shù)圖像的平移:例:SKIPIF1<0平移一單位后,解析式是?④函數(shù)的單調(diào)性SKIPIF1<0SKIPIF1<0則f(x)單增。反之單減。從圖像上看,單增的圖像在x的正方向上往上。即例:判斷SKIPIF1<0的單調(diào)性。(單增)以后判斷函數(shù)的單調(diào)性還有別的方法,例如利用復(fù)合函數(shù)地方法和導(dǎo)數(shù)地方法。⑤函數(shù)的奇偶性奇函數(shù):SKIPIF1<0,偶函數(shù):SKIPIF1<0奇函數(shù)和偶函數(shù)定義域?qū)ΨQ。例:函數(shù)綜合復(fù)習(xí)題。1.11.基本初等函數(shù)(要求能做出圖像,定義域。注意牢記。)1).冪函數(shù):SKIPIF1<0SKIPIF1<0,定義域SKIPIF1<0以SKIPIF1<0SKIPIF1<0為例2).指數(shù)函數(shù):SKIPIF1<0SKIPIF1<0,定義域SKIPIF1<0例如:SKIPIF1<03).對數(shù)函數(shù):SKIPIF1<0定義域SKIPIF1<04).三角函數(shù):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<05).反三角函數(shù):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0例題:1,做出函數(shù)SKIPIF1<0的圖像。2,做出函數(shù)SKIPIF1<0的圖像。3,求SKIPIF1<0的定義域。4,求SKIPIF1<0的定義域。注意分SKIPIF1<0以及它的奇偶性討論。2.初等函數(shù):由常數(shù)和基本初等函數(shù)經(jīng)過有限次四則運算和有限次復(fù)合所構(gòu)成并可由一個式子表示的函數(shù)稱為初等函數(shù)。如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不是初等函數(shù)。SKIPIF1<0是初等函數(shù)。注意,要能區(qū)分初等函數(shù)和復(fù)合函數(shù)。例:3.復(fù)合函數(shù)設(shè)SKIPIF1<0定義域為SKIPIF1<0,SKIPIF1<0定義域為SKIPIF1<0,而且SKIPIF1<0,則SKIPIF1<0SKIPIF1<0稱為由SKIPIF1<0與SKIPIF1<0復(fù)合而成的復(fù)合函數(shù),記為SKIPIF1<0SKIPIF1<0(SKIPIF1<0)為SKIPIF1<0與SKIPIF1<0可以復(fù)合的條件。如SKIPIF1<0與SKIPIF1<0不能復(fù)合。有時,SKIPIF1<0與SKIPIF1<0復(fù)合的定義域可能是SKIPIF1<0的定義域的一部分,如SKIPIF1<0與SKIPIF1<0復(fù)合得SKIPIF1<0的定義域為SKIPIF1<0為SKIPIF1<0的定義域SKIPIF1<0的一部分。單調(diào)性相同的函數(shù)復(fù)合成增函數(shù),單調(diào)性不同的函數(shù)復(fù)合成減函數(shù)。例1.求下列函數(shù)的定義域SKIPIF1<0SKIPIF1<04。分段函數(shù):不同的區(qū)間段對應(yīng)不同的解析式,這時候往往用分段函數(shù)來表示。例如SKIPIF1<01.1.4常見的經(jīng)濟函數(shù)1需求函數(shù)Qd=Qd(p)一般是減函數(shù)。2供給函數(shù)Qs=Qs(p)一般是增函數(shù)。3成本函數(shù)C=C0+C1C0是固定成本,一般為常數(shù),C1是變動成本,是產(chǎn)量的函數(shù),即C1=C14收入函數(shù)R=pq=qp(q)q為產(chǎn)量,這里價格一般是產(chǎn)量的函數(shù)。5利潤函數(shù)L=R-C§1.2函數(shù)的極限1.2.1極限的1數(shù)列的極限數(shù)列是自變量為自然數(shù)的函數(shù),SKIPIF1<0.當(dāng)SKIPIF1<0時,若SKIPIF1<0稱SKIPIF1<0是SKIPIF1<0的極限,記為SKIPIF1<0SKIPIF1<0是一個有限的常數(shù)。例:求下列數(shù)列的極限SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列極限的基本性質(zhì)①數(shù)列若有極限,則極限唯一。②有極限的數(shù)列一定有界,有界的數(shù)列不一定有極限。無界的數(shù)列一定無極限。注:SKIPIF1<0有界SKIPIF1<0例如:SKIPIF1<0,SKIPIF1<0.都有界但無極限。對第二條簡要證明:只需考察當(dāng)SKIPIF1<0時,SKIPIF1<0是否是個有限數(shù)。由SKIPIF1<0容易得到。2函數(shù)的極限(1)自變量趨向于無窮時函數(shù)的極限例SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0.定義:當(dāng)SKIPIF1<0時,若SKIPIF1<0稱SKIPIF1<0是SKIPIF1<0當(dāng)SKIPIF1<0時的極限。記為SKIPIF1<0SKIPIF1<0是一個有限的常數(shù)。例:求極限SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0思考SKIPIF1<0SKIPIF1<0是否存在?(2)自變量趨向于某一個有限值時函數(shù)的極限定義3:當(dāng)SKIPIF1<0時,若SKIPIF1<0稱SKIPIF1<0是SKIPIF1<0當(dāng)SKIPIF1<0時的極限。記為SKIPIF1<0SKIPIF1<0是一個有限的常數(shù)例3:求SKIPIF1<0SKIPIF1<0SKIPIF1<0思考:SKIPIF1<0是否存在?(3)單側(cè)極限思考?兩函數(shù)①SKIPIF1<0SKIPIF1<0從左邊趨近0和從右邊趨近于0時,SKIPIF1<0②SKIPIF1<0SKIPIF1<0從左邊趨近0時SKIPIF1<0SKIPIF1<0從右邊趨近于0時SKIPIF1<0當(dāng)SKIPIF1<0是從左邊趨近時,記為SKIPIF1<0當(dāng)SKIPIF1<0是從右邊趨近時,記為SKIPIF1<0定義3若SKIPIF1<0時SKIPIF1<0稱SKIPIF1<0是SKIPIF1<0在SKIPIF1<0時的左極限。記為SKIPIF1<0SKIPIF1<0時SKIPIF1<0稱SKIPIF1<0是SKIPIF1<0在SKIPIF1<0時的右極限,記為SKIPIF1<0左極限和右極限統(tǒng)稱單側(cè)極限。*SKIPIF1<0在SKIPIF1<0存在極限SKIPIF1<0左右極限存在且相等。即SKIPIF1<0SKIPIF1<0例2:判斷下列函數(shù)在SKIPIF1<0是否有極限SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<01.2.2極限的運算法則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0例4:求下列極限SKIPIF1<0SKIPIF1<0SKIPIF1<0一般地:SKIPIF1<0例5:練習(xí):SKIPIF1<0,SKIPIF1<0例6:求極限:SKIPIF1<0SKIPIF1<01.2.3無窮小量1定義:如果當(dāng)SKIPIF1<0(或SKIPIF1<0)時,函數(shù)f(x)的極限為零,稱函數(shù)f(x)為SKIPIF1<0(或SKIPIF1<0)時的無窮小量,簡稱無窮小。定理:若SKIPIF1<0則SKIPIF1<0。其中為SKIPIF1<0時的無窮小.例:2。無窮小性質(zhì)性質(zhì)1有限個無窮小的代數(shù)和仍為無窮小。性質(zhì)2有界函數(shù)與無窮小的乘積為無窮小。例:SKIPIF1<03。無窮小的比較定義設(shè)SKIPIF1<0,SKIPIF1<0為無窮小如果SKIPIF1<0,則說SKIPIF1<0是比SKIPIF1<0高階的無窮小,記作SKIPIF1<0;如果SKIPIF1<0,則說SKIPIF1<0是比SKIPIF1<0低階的無窮??;如果SKIPIF1<0,則說SKIPIF1<0與SKIPIF1<0是同階無窮??;如果SKIPIF1<0,則說SKIPIF1<0與SKIPIF1<0是等價無窮小,記作SKIPIF1<0;如果SKIPIF1<0,SKIPIF1<0,則說SKIPIF1<0是關(guān)于SKIPIF1<0的SKIPIF1<0階無窮小。無窮小替換方法:若SKIPIF1<0,SKIPIF1<0的極限存在,則SKIPIF1<0的極限等于SKIPIF1<0的極限。注意:替換時無窮小必須是因子。常用的等價的無窮小量。SKIPIF1<0~SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0例3SKIPIF1<0,SKIPIF1<0例4SKIPIF1<0因SKIPIF1<0,SKIPIF1<0~SKIPIF1<0,故極限為零,解法是否正確?1.2.4兩個重要極限SKIPIF1<0與SKIPIF1<01.夾逼定理和極限SKIPIF1<0定理:若在某鄰域內(nèi)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0存在,且SKIPIF1<0。證明:SKIPIF1<0所以SKIPIF1<0即SKIPIF1<0由于SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0由于SKIPIF1<0為偶函數(shù),故在SKIPIF1<0內(nèi),也有SKIPIF1<0。由于當(dāng)SKIPIF1<0時SKIPIF1<0由夾逼準(zhǔn)則,得SKIPIF1<0,由夾逼準(zhǔn)則,得SKIPIF1<0一般地:SKIPIF1<0例1:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)數(shù)列極限和SKIPIF1<0若SKIPIF1<0稱數(shù)列是單調(diào)增數(shù)列。SKIPIF1<0稱數(shù)列是單調(diào)減數(shù)列。定理:單調(diào)有界數(shù)列必有極限。例2:SKIPIF1<0是單調(diào)增加數(shù)列。故SKIPIF1<0是存在的,令SKIPIF1<0。SKIPIF1<0SKIPIF1<0SKIPIF1<0顯然SKIPIF1<0定理:SKIPIF1<0證明:對于任何SKIPIF1<0,存在正整數(shù)SKIPIF1<0使得SKIPIF1<0,因此有SKIPIF1<0由于SKIPIF1<0得SKIPIF1<0一般地:SKIPIF1<0或者SKIPIF1<0例3:SKIPIF1<0SKIPIF1<0SKIPIF1<0思考:SKIPIF1<0SKIPIF1<0§2.4函數(shù)的連續(xù)性與連續(xù)函數(shù)的運算1.函數(shù)連續(xù)性概念(1)連續(xù)性定義連續(xù)性即是當(dāng)自變量作微小變動時,函數(shù)值也相應(yīng)的做微小變動,體現(xiàn)在函數(shù)圖象上就是沒有斷點。定義.1:當(dāng)SKIPIF1<0時,若SKIPIF1<0稱SKIPIF1<0在SKIPIF1<0連續(xù)。即SKIPIF1<0.顯然SKIPIF1<0在SKIPIF1<0連續(xù)的充要條件是SKIPIF1<0若SKIPIF1<0在定義域內(nèi)每一點連續(xù),稱SKIPIF1<0是連續(xù)函數(shù)。例1:SKIPIF1<0在任意區(qū)間內(nèi)連續(xù)。例.2:討論SKIPIF1<0,和SKIPIF1<0在x=0的連續(xù)性。2。函數(shù)的間斷點如果函數(shù)SKIPIF1<0在SKIPIF1<0處不連續(xù),則SKIPIF1<0稱為函數(shù)SKIPIF1<0的一個間斷點。間斷點有三種情況:(1)SKIPIF1<0在SKIPIF1<0處沒有定義;(2)SKIPIF1<0在SKIPIF1<0處沒有極限;(3)SKIPIF1<0;例如SKIPIF1<0在SKIPIF1<0處沒有定義;SKIPIF1<0當(dāng)SKIPIF1<0時沒有極限。SKIPIF1<0當(dāng)SKIPIF1<0時SKIPIF1<0定義2.如果SKIPIF1<0是間斷點,當(dāng)SKIPIF1<0在SKIPIF1<0左右極限都存在時,稱SKIPIF1<0為第一類間斷點。其余稱為第二類間斷點。例3:判斷SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的間斷點是什么類型。例4:指出SKIPIF1<0的間斷點,及其類型。3.函數(shù)在一點連續(xù)的性質(zhì)SKIPIF1<0在SKIPIF1<0連續(xù)SKIPIF1<0例5:SKIPIF1<0SKIPIF1<0,SKIPIF1<04.閉區(qū)域上連續(xù)函數(shù)的性質(zhì)定理1:最大最小值定理:在閉區(qū)間上連續(xù)的函數(shù),在該區(qū)間上必有最大值和最小值。定理2:零點定理:設(shè)函數(shù)SKIPIF1<0在閉區(qū)間SKIPIF1<0上連續(xù),且SKIPIF1<0,則必有SKIPIF1<0,使得SKIPIF1<0。例6:證明方程SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)至少有一個根。定理3(介值定理)設(shè)函數(shù)SKIPIF1<0在閉區(qū)間SKIPIF1<0上連續(xù),且在這區(qū)間的端點取不同的函數(shù)值,即SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則對于介于SKIPIF1<0與SKIPIF1<0之間的任意一個數(shù)SKIPIF1<0,在開區(qū)間SKIPIF1<0內(nèi)至少有一點SKIPIF1<0,使得SKIPIF1<0。證明:令SKIPIF1<0,對SKIPIF1<0應(yīng)用零點定理,得存在SKIPIF1<0,使得SKIPIF1<0即SKIPIF1<0或SKIPIF1<0SKIPIF1<0……………一、課程單元、章節(jié)第三章導(dǎo)數(shù)與微分二、教學(xué)要求理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運算和一階微分形式的不變性,會求函數(shù)的微分,了解微分在近似計算中的應(yīng)用。了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù)。會求分段函數(shù)的一階、二階導(dǎo)數(shù),會計算函數(shù)的相關(guān)變化率。會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一、二階導(dǎo)數(shù),會求反函數(shù)的導(dǎo)數(shù)。三、重點和難點1.點:四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運算和一階微分形式的不變性,會求函數(shù)的微分,了解微分在近似計算中的應(yīng)用。2.點:復(fù)合函數(shù)的求導(dǎo)法則,隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)四、教學(xué)進度:1.導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。2.導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運算和一階微分形式的不變性,會求函數(shù)的微分,了解微分在近似計算中的應(yīng)用。3.高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù)。4.分段函數(shù)的一階、二階導(dǎo)數(shù),會計算函數(shù)的相關(guān)變化率。5.隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一、二階導(dǎo)數(shù),會求反函數(shù)的導(dǎo)數(shù)。五、時數(shù)10六、教學(xué)方式:課堂講解七、作業(yè):教材第48頁1,2,5,11,14八、參考書籍:《應(yīng)用高等數(shù)學(xué)》上,翟向陽主編,上海交通大學(xué)出版社《高等數(shù)學(xué)》盛驟等編,浙江大學(xué)出版社九、教學(xué)小結(jié):本章主要內(nèi)容是導(dǎo)數(shù)與微分的定義,計算以及應(yīng)用。微分學(xué)有兩個基本概念:一個是導(dǎo)數(shù),一個是微分,導(dǎo)數(shù)與微分有著密切的聯(lián)系,她們從不同的角度刻畫了兩個變量間的某種變化特征。十、教學(xué)過程、內(nèi)容:§3.1導(dǎo)數(shù)概念1.引例(1).直線運動的速度一物體作直線運動,位置與時間的關(guān)系為SKIPIF1<0,確定物體在某時刻SKIPIF1<0的速度。從時刻SKIPIF1<0到時刻SKIPIF1<0,物體從SKIPIF1<0運動到SKIPIF1<0,在該時間段內(nèi)物體運動的平均速度為SKIPIF1<0物體在SKIPIF1<0時刻的速度定義為SKIPIF1<0(2)曲線的切線函數(shù)SKIPIF1<0的圖形一般為一條曲線SKIPIF1<0,確定曲線SKIPIF1<0在點SKIPIF1<0處的切線。在SKIPIF1<0的鄰近取一點SKIPIF1<0,則割線SKIPIF1<0的斜率為SKIPIF1<0當(dāng)點SKIPIF1<0沿曲線SKIPIF1<0趨向于SKIPIF1<0,割線SKIPIF1<0的極限位置稱為曲線SKIPIF1<0在SKIPIF1<0點的切線。因此,切線的斜率為SKIPIF1<02.導(dǎo)數(shù)的定義(1.)導(dǎo)數(shù)的定義如果記SKIPIF1<0,則SKIPIF1<0相當(dāng)于SKIPIF1<0,因此SKIPIF1<0定義3.1設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0的某鄰域內(nèi)有定義,當(dāng)自變量SKIPIF1<0在SKIPIF1<0處取得增量SKIPIF1<0,相應(yīng)地函數(shù)SKIPIF1<0取得增量SKIPIF1<0,如果極限SKIPIF1<0存在,則說函數(shù)SKIPIF1<0在SKIPIF1<0處可導(dǎo),極限值稱為函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù),記為SKIPIF1<0,即SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù)也可記為SKIPIF1<0,SKIPIF1<0或SKIPIF1<0如果記SKIPIF1<0,導(dǎo)數(shù)也可表示為SKIPIF1<0及SKIPIF1<0如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的每一點都可導(dǎo),則說函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)可導(dǎo),即對任何SKIPIF1<0,有SKIPIF1<0SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)(簡稱為SKIPIF1<0的導(dǎo)數(shù)),而且SKIPIF1<0(2)運用定義求導(dǎo)數(shù)例1求函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù))的導(dǎo)數(shù)。例2求函數(shù)SKIPIF1<0(SKIPIF1<0)在SKIPIF1<0處的導(dǎo)數(shù)。解:由于SKIPIF1<0因此得SKIPIF1<0更一般地,有SKIPIF1<0(SKIPIF1<0為實數(shù))例如SKIPIF1<0SKIPIF1<0例3.求函數(shù)SKIPIF1<0的導(dǎo)數(shù)。解:計算得SKIPIF1<03。導(dǎo)數(shù)的幾何意義如果函數(shù)SKIPIF1<0在SKIPIF1<0可導(dǎo),則SKIPIF1<0在SKIPIF1<0的導(dǎo)數(shù)值為曲線C:SKIPIF1<0在點SKIPIF1<0處的切線的斜率,即SKIPIF1<0因此,曲線C:SKIPIF1<0在點SKIPIF1<0處的切線的方程為SKIPIF1<0過曲線C:SKIPIF1<0的切點SKIPIF1<0,與切線垂直的直線稱為曲線在點SKIPIF1<0處的法線。如果SKIPIF1<0,曲線C:SKIPIF1<0在點SKIPIF1<0處的法線方程為SKIPIF1<0例4求曲線SKIPIF1<0在點SKIPIF1<0處的切線和法線的方程。例5求SKIPIF1<0,在任一點的切線和法線方程,并觀察函數(shù)在極值處的切線和法線的特點。4、函數(shù)可導(dǎo)與連續(xù)的關(guān)系定理3.1函數(shù)SKIPIF1<0在SKIPIF1<0可導(dǎo),則函數(shù)一定在SKIPIF1<0連續(xù)。證明:因為SKIPIF1<0存在,又SKIPIF1<0,SKIPIF1<0=0,故SKIPIF1<0SKIPIF1<0注:定理的逆命題不真,例如,SKIPIF1<0,在SKIPIF1<0處不可導(dǎo);※單側(cè)導(dǎo)數(shù)如果極限SKIPIF1<0存在,則稱為函數(shù)SKIPIF1<0在SKIPIF1<0處的右導(dǎo)數(shù),記為SKIPIF1<0。如果極限SKIPIF1<0存在,則稱為函數(shù)SKIPIF1<0在SKIPIF1<0處的左導(dǎo)數(shù),記為SKIPIF1<0;例6:求SKIPIF1<0在x=0的左右導(dǎo)數(shù)。例7:求SKIPIF1<0在x=0的左右導(dǎo)數(shù)。顯然由極限存在的充要條件可得到:定理3.2:函數(shù)SKIPIF1<0在SKIPIF1<0處可導(dǎo)的充要條件是函數(shù)在SKIPIF1<0的左右導(dǎo)數(shù)存在且相等。例8:判斷函數(shù)SKIPIF1<0在x=0的可導(dǎo)性。練習(xí):判斷SKIPIF1<0在x=0的可導(dǎo)性?!?.2導(dǎo)數(shù)的運算1。初等函數(shù)的導(dǎo)數(shù)公式(1)SKIPIF1<0,(2)SKIPIF1<0,(3)SKIPIF1<0,(4)SKIPIF1<0,(5)SKIPIF1<0,(6)SKIPIF1<0,(7)SKIPIF1<0,(8)SKIPIF1<0,(9)SKIPIF1<0,(10)SKIPIF1<0(11)SKIPIF1<0,2。函數(shù)的和、差、積、商的求導(dǎo)法則定理3.3如果函數(shù)SKIPIF1<0及SKIPIF1<0都在點SKIPIF1<0具有導(dǎo)數(shù),則(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0(SKIPIF1<0)。證明:(2)SKIPIF1<0SKIPIF1<0例1求下列函數(shù)的導(dǎo)數(shù)(1)SKIPIF1<0,(2)SKIPIF1<0,(3)SKIPIF1<03。復(fù)合函數(shù)的導(dǎo)數(shù)對于復(fù)合函數(shù),如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0有求導(dǎo)法則,稱為鏈?zhǔn)椒▌t。定理3.4如果SKIPIF1<0在點SKIPIF1<0可導(dǎo),SKIPIF1<0在點SKIPIF1<0可導(dǎo),則復(fù)合函數(shù)SKIPIF1<0在點SKIPIF1<0可導(dǎo),且導(dǎo)數(shù)為SKIPIF1<0或SKIPIF1<0證明:SKIPIF1<0可導(dǎo),故SKIPIF1<0時必有SKIPIF1<0,SKIPIF1<0SKIPIF1<0例2求下列函數(shù)的導(dǎo)數(shù)(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0(5)SKIPIF1<04。隱函數(shù)的導(dǎo)數(shù)一般地,方程SKIPIF1<0可確定一個函數(shù)SKIPIF1<0或SKIPIF1<0,稱為由方程SKIPIF1<0確定的隱函數(shù)。現(xiàn)在來求隱函數(shù)的導(dǎo)數(shù),通過例子來說明。例3.2.3設(shè)SKIPIF1<0是由方程SKIPIF1<0確定的隱函數(shù),求SKIPIF1<0。解:由于SKIPIF1<0由方程SKIPIF1<0確定,得SKIPIF1<0兩邊對SKIPIF1<0求導(dǎo)數(shù),得SKIPIF1<0解得SKIPIF1<0練習(xí):設(shè)SKIPIF1<0由方程SKIPIF1<0確定,求SKIPIF1<0解:方程兩邊對SKIPIF1<0求導(dǎo)數(shù),得SKIPIF1<0解得SKIPIF1<0由于SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0例4求SKIPIF1<0(SKIPIF1<0)的導(dǎo)數(shù)。解:兩邊取對數(shù),得SKIPIF1<0兩邊對SKIPIF1<0求導(dǎo)數(shù),得SKIPIF1<0解得SKIPIF1<0一般情況,對于冪指函數(shù):SKIPIF1<0(SKIPIF1<0)求導(dǎo)數(shù)SKIPIF1<0的方法為:先取對數(shù),得SKIPIF1<0對SKIPIF1<0求導(dǎo)數(shù),得SKIPIF1<0解得SKIPIF1<0以上求導(dǎo)數(shù)方法稱為對數(shù)求導(dǎo)法。5。高階導(dǎo)數(shù)對于路程函數(shù)SKIPIF1<0,SKIPIF1<0為速度,SKIPIF1<0為加速度,SKIPIF1<0為SKIPIF1<0二階導(dǎo)數(shù),記成SKIPIF1<0。對于一般函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0稱為SKIPIF1<0的二階導(dǎo)數(shù),記成SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,記SKIPIF1<0類似,可定義三階導(dǎo)數(shù)SKIPIF1<0、四階導(dǎo)數(shù)SKIPIF1<0乃至于SKIPIF1<0階導(dǎo)數(shù)SKIPIF1<0,即SKIPIF1<0SKIPIF1<0稱為SKIPIF1<0一階導(dǎo)數(shù),二階以及二階以上導(dǎo)數(shù)都稱為高階導(dǎo)數(shù)。例.5設(shè)SKIPIF1<0,求SKIPIF1<0解:SKIPIF1<0,SKIPIF1<0例6SKIPIF1<0,求SKIPIF1<0思考:1設(shè)SKIPIF1<0,求SKIPIF1<02設(shè)SKIPIF1<0,求SKIPIF1<0SKIPIF1<0SKIPIF1<0§3.4微分1.微分的概念邊長為SKIPIF1<0的正方形的面積SKIPIF1<0,如果邊長從SKIPIF1<0增加到SKIPIF1<0時,面積的增量為SKIPIF1<0SKIPIF1<0包含兩部分,SKIPIF1<0和SKIPIF1<0。相對比較SKIPIF1<0比SKIPIF1<0小得多,而且SKIPIF1<0這樣,當(dāng)SKIPIF1<0很小時,SKIPIF1<0,而且SKIPIF1<0。對于一般的函數(shù)SKIPIF1<0,當(dāng)自變量SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時,函數(shù)增量SKIPIF1<0定義:設(shè)函數(shù)SKIPIF1<0在某區(qū)間SKIPIF1<0內(nèi)有定義,SKIPIF1<0及SKIPIF1<0屬于SKIPIF1<0。如果函數(shù)的增量可表為SKIPIF1<0其中SKIPIF1<0為與SKIPIF1<0無關(guān)的常數(shù),則說函數(shù)SKIPIF1<0在SKIPIF1<0處是可微的,SKIPIF1<0稱為函數(shù)SKIPIF1<0在SKIPIF1<0處的微分,記為SKIPIF1<0,即SKIPIF1<0下面論述函數(shù)SKIPIF1<0在SKIPIF1<0處是可微的條件。定理3.9SKIPIF1<0在SKIPIF1<0處是可微當(dāng)且僅當(dāng)它在SKIPIF1<0可導(dǎo)。證明:如果函數(shù)SKIPIF1<0在SKIPIF1<0處是可微,則SKIPIF1<0即SKIPIF1<0因此SKIPIF1<0即函數(shù)SKIPIF1<0在SKIPIF1<0處是可導(dǎo),而且SKIPIF1<0。反之,如果函數(shù)SKIPIF1<0在SKIPIF1<0處是可導(dǎo),即SKIPIF1<0因此得SKIPIF1<0SKIPIF1<0為SKIPIF1<0時的無窮小。即SKIPIF1<0綜上,函數(shù)SKIPIF1<0在SKIPIF1<0處是可微等價于函數(shù)SKIPIF1<0在SKIPIF1<0處是可微,而且SKIPIF1<0。特別地,函數(shù)SKIPIF1<0的微分為SKIPIF1<0。因此,函數(shù)SKIPIF1<0的微分為SKIPIF1<0例1求函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0的微分例2求函數(shù)SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0時的微分2.微分的幾何意義設(shè)函數(shù)SKIPIF1<0,當(dāng)自變量SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0,相應(yīng)的函數(shù)增量為SKIPIF1<0如圖,函數(shù)SKIPIF1<0在SKIPIF1<0處的微分SKIPIF1<0為曲線SKIPIF1<0的切線當(dāng)SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時的增量,即SKIPIF1<03.參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)一般情況,平面曲線的參數(shù)方程SKIPIF1<0SKIPIF1<0SKIPIF1<0例3設(shè)SKIPIF1<0,求SKIPIF1<0例4求橢圓曲線SKIPIF1<0在SKIPIF1<0相應(yīng)點的切線方程。練習(xí):計算擺線SKIPIF1<0的二階導(dǎo)數(shù)SKIPIF1<0。特別對一元函數(shù)SKIPIF1<0有:SKIPIF1<0常用的近似公式:SKIPIF1<0SKIPIF1<0SKIPIF1<0……………一、程單元、章節(jié)第四章導(dǎo)數(shù)的應(yīng)用二、教學(xué)要求了解并會用羅爾定理、拉格朗日中值定理。理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值與最小值的求法及其簡單應(yīng)用。會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性和拐點,會求函數(shù)圖形的水平、鉛直和斜漸近線,會描繪函數(shù)圖形。4握用洛比達法則求未定式極限的方法。三、重點和難點1重點:洛比達法則求未定式極限,理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值與最小值的求法及其簡單應(yīng)用。2難點:會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性和拐點,會求函數(shù)圖形的水平、鉛直和斜漸近線,會描繪函數(shù)圖形四、教學(xué)進度:按教學(xué)要求的過程五、課時數(shù)6六、教學(xué)方式:課堂講解七、作業(yè):教材第66頁1,3,5,6八、參考書籍:《應(yīng)用高等數(shù)學(xué)》上,翟向陽主編,上海交通大學(xué)出版社《高等數(shù)學(xué)》盛驟等編,浙江大學(xué)出版社九、教學(xué)小結(jié):本章學(xué)習(xí)的三個中值定理是微分學(xué)的理論基礎(chǔ)。掌握函數(shù)單調(diào)性的判定是本章的重點。十、教學(xué)過程及內(nèi)容:§4.1中值定理1.羅爾定理費馬引理設(shè)函數(shù)SKIPIF1<0在點SKIPIF1<0的某鄰域SKIPIF1<0內(nèi)有定義,并且在SKIPIF1<0處可導(dǎo),如果對于任意的SKIPIF1<0,有SKIPIF1<0(或SKIPIF1<0)則SKIPIF1<0。證明:不妨設(shè)SKIPIF1<0時,SKIPIF1<0。于是,對于SKIPIF1<0,有SKIPIF1<0從而當(dāng)SKIPIF1<0時SKIPIF1<0故SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0故SKIPIF1<0由于SKIPIF1<0在SKIPIF1<0處可導(dǎo),故SKIPIF1<0羅爾定理如果函數(shù)SKIPIF1<0滿足在閉區(qū)間SKIPIF1<0上連續(xù);(2)在開區(qū)間SKIPIF1<0內(nèi)可微;在區(qū)間端點處的函數(shù)值相等,即SKIPIF1<0,則至少存在一點SKIPIF1<0,使得SKIPIF1<0。證明:由于SKIPIF1<0在閉區(qū)間SKIPIF1<0上連續(xù),故SKIPIF1<0在SKIPIF1<0取得其最大值SKIPIF1<0和最小值SKIPIF1<0。分兩種情況:(1)如果SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上為常數(shù),故SKIPIF1<0。這樣,任取SKIPIF1<0,都有SKIPIF1<0。(2)如果SKIPIF1<0,則最大值SKIPIF1<0與最小值SKIPIF1<0至少有一個不等于SKIPIF1<0在區(qū)間端點處的函數(shù)值。不妨設(shè)SKIPIF1<0,因此至少存在一點SKIPIF1<0,使得SKIPIF1<0。因此,對于任何SKIPIF1<0,都有SKIPIF1<0,由費馬引理SKIPIF1<0。例4.1.1SKIPIF1<0在[0,1]上是否滿足羅爾定理條件。例4.1.2SKIPIF1<0,在取間SKIPIF1<0上是否滿足?2、拉格朗日中值定理拉格朗日中值定理如果函數(shù)SKIPIF1<0滿足(1)在閉區(qū)間SKIPIF1<0上連續(xù);(2)在開區(qū)間SKIPIF1<0內(nèi)可微,則至少存在一點SKIPIF1<0,使得SKIPIF1<0(1)或SKIPIF1<0證明:構(gòu)造輔助函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0上滿足羅爾定理的條件,故至少存在一點SKIPIF1<0,使得SKIPIF1<0。又由于SKIPIF1<0故SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0公式(1)稱為拉格朗日中值公式。關(guān)于拉格朗日中值公式,有以下幾點說明:(1)如果SKIPIF1<0,則SKIPIF1<0,即羅爾定理是拉格朗日中值定理的特例。(2)當(dāng)SKIPIF1<0時,公式(1)也成立。如果SKIPIF1<0在SKIPIF1<0上滿足拉格朗日中值定理條件,SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0介于SKIPIF1<0與SKIPIF1<0之間或SKIPIF1<0(SKIPIF1<0)(2)公式(2)稱為有限增量公式。定理如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的導(dǎo)數(shù)恒為零,則SKIPIF1<0在區(qū)間SKIPIF1<0上是一個常數(shù)。證明:任取SKIPIF1<0,由拉格朗日中值定理SKIPIF1<0由于SKIPIF1<0,故SKIPIF1<0。由于SKIPIF1<0,SKIPIF1<0的任意性,得SKIPIF1<0在區(qū)間SKIPIF1<0上是一個常數(shù)。例4.1.3證明當(dāng)SKIPIF1<0時SKIPIF1<0證明:令SKIPIF1<0,在SKIPIF1<0上應(yīng)用拉格朗日中值定理,得SKIPIF1<0SKIPIF1<0由于SKIPIF1<0得SKIPIF1<0例4.1.4:證明:若SKIPIF1<0,則SKIPIF1<03、柯西中值定理(略)如果曲線SKIPIF1<0由參數(shù)方程表示,即SKIPIF1<0:SKIPIF1<0SKIPIF1<0則SKIPIF1<0但是,弦SKIPIF1<0的斜率為SKIPIF1<0因此,在SKIPIF1<0點有SKIPIF1<0注意,當(dāng)SKIPIF1<0時,柯西中值定理便轉(zhuǎn)化為拉格朗日中值定理?!?.2洛必達法則4.2.1羅必塔法則(SKIPIF1<0)型定理:若函數(shù)SKIPIF1<0和SKIPIF1<0滿足:(1)SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0的某去心鄰域存在,且SKIPIF1<0則SKIPIF1<0證明:設(shè)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0的去心鄰域OSKIPIF1<0存在,即SKIPIF1<0,SKIPIF1<0和SKIPIF1<0在SKIPIF1<0連續(xù),在SKIPIF1<0可導(dǎo)。由拉格朗日中值定理得到:存在SKIPIF1<0使SKIPIF1<0,SKIPIF1<0故SKIPIF1<0讓SKIPIF1<0,這時SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0故SKIPIF1<0,SKIPIF1<0例4.2.1求下列極限SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<04.2.1羅必塔法則(SKIPIF1<0)型定理:若函數(shù)SKIPIF1<0和SKIPIF1<0滿足:(1)SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0的某去心鄰域存在,且SKIPIF1<0則SKIPIF1<0例4.2.2求下列極限SKIPIF1<0,SKIPIF1<0,SKIPIF1<0§4.3函數(shù)的單調(diào)性4.3.1一元函數(shù)的單調(diào)性定理:SKIPIF1<0在SKIPIF1<0上可導(dǎo),則SKIPIF1<0在SKIPIF1<0單增SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單減SKIPIF1<0證明:取SKIPIF1<0,由SKIPIF1<0可得結(jié)論。例4.3.1試證:SKIPIF1<0在SKIPIF1<0單增。例4.3.2求SKIPIF1<0的單調(diào)區(qū)間。思考:用單調(diào)性證明:若SKIPIF1<0,則SKIPIF1<0證明:SKIPIF1<0,SKIPIF1<0時SKIPIF1<0SKIPIF1<0SKIPIF1<0時SKIPIF1<0,SKIPIF1<0§4.4函數(shù)的極值與最大、最小值1函數(shù)的極值例SKIPIF1<0在點SKIPIF1<0的左側(cè)鄰近,SKIPIF1<0單調(diào)增加;在點SKIPIF1<0的左側(cè)鄰近,SKIPIF1<0單調(diào)減少,即存在SKIPIF1<0的去心鄰域SKIPIF1<0,SKIPIF1<0時,使得SKIPIF1<0。同理,對于點SKIPIF1<0,存在SKIPIF1<0的去心鄰域SKIPIF1<0,SKIPIF1<0時,使得SKIPIF1<0。定義設(shè)函數(shù)SKIPIF1<0在點SKIPIF1<0某鄰域SKIPIF1<0內(nèi)有定義,如果對于任何SKIPIF1<0,有SKIPIF1<0(或SKIPIF1<0)則SKIPIF1<0稱為SKIPIF1<0的一個極大值(極小值)。極大值、極小值都稱為函數(shù)的極值,使得函數(shù)取得極值的點稱為極值點。定理1(必要條件)設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0處可導(dǎo),且在SKIPIF1<0處取得極值,則SKIPIF1<0。定理2(第一充分條件)設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0處,且在SKIPIF1<0某去心鄰域SKIPIF1<0內(nèi)可導(dǎo),(1)若SKIPIF1<0時,SKIPIF1<0,而SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0處取得極大值;(2)若SKIPIF1<0時,SKIPIF1<0,而SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0處取得極小值;(3)若SKIPIF1<0時,SKIPIF1<0的符號保持不變,則SKIPIF1<0在SKIPIF1<0處沒有極值。如果SKIPIF1<0某區(qū)間內(nèi)連續(xù),除個別點外處處可導(dǎo),求SKIPIF1<0在該區(qū)間內(nèi)極值點和極值的方法如下:(1)求出導(dǎo)數(shù)SKIPIF1<0(2)求出SKIPIF1<0的全體駐點與不可導(dǎo)的點;(3)考察SKIPIF1<0的符號在每個駐點和不可導(dǎo)的點的左、右鄰近的符號,以確定該點是否為極值點,如果是極值點,是極大值點還是極小值點;(4)對于極值點,求出極值。例4.3.3求函數(shù)SKIPIF1<0的極值。解:SKIPIF1<0;(SKIPIF1<0),SKIPIF1<0在SKIPIF1<0內(nèi),SKIPIF1<0,SKIPIF1<0內(nèi),SKIPIF1<0。故SKIPIF1<0在SKIPIF1<0達極大值。定理3(第二充分條件)設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0處具有二階導(dǎo)數(shù)且SKIPIF1<0,SKIPIF1<0,則(1)當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0處取得極大值;(2)當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0處取得極小值。證明:由于SKIPIF1<0由極限的保號性,存在SKIPIF1<0的鄰域SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0即SKIPIF1<0即SKIPIF1<0在SKIPIF1<0的兩側(cè)改變符號,且由正變負,故SKIPIF1<0在SKIPIF1<0處取得極大值。例1求函數(shù)SKIPIF1<0的極值。解:SKIPIF1<0,令SKIPIF1<0,得駐點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0。計算得SKIPIF1<0由于SKIPIF1<0,故SKIPIF1<0為極小值。因為SKIPIF1<0,故需用第一充分條件,得SKIPIF1<0,SKIPIF1<0都不是極值點。練習(xí):求SKIPIF1<0的極值。§4.5函數(shù)的凹凸性及拐點以下考慮函數(shù)SKIPIF1<0二階可導(dǎo)。定理:在區(qū)間SKIPIF1<0內(nèi),若SKIPIF1<0,則SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論