廣東省深圳市寶安、羅湖、福田、龍華四區(qū)重點達標名校2024年中考適應性考試數學試題含解析_第1頁
廣東省深圳市寶安、羅湖、福田、龍華四區(qū)重點達標名校2024年中考適應性考試數學試題含解析_第2頁
廣東省深圳市寶安、羅湖、福田、龍華四區(qū)重點達標名校2024年中考適應性考試數學試題含解析_第3頁
廣東省深圳市寶安、羅湖、福田、龍華四區(qū)重點達標名校2024年中考適應性考試數學試題含解析_第4頁
廣東省深圳市寶安、羅湖、福田、龍華四區(qū)重點達標名校2024年中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市寶安、羅湖、福田、龍華四區(qū)重點達標名校2024年中考適應性考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的倒數的絕對值是()A. B. C. D.2.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.3.小穎隨機抽樣調查本校20名女同學所穿運動鞋尺碼,并統計如表:尺碼/cm21.522.022.523.023.5人數24383學校附近的商店經理根據統計表決定本月多進尺碼為23.0cm的女式運動鞋,商店經理的這一決定應用的統計量是()A.平均數 B.加權平均數 C.眾數 D.中位數4.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是(A.y=x2+1 B.y=x5.小紅上學要經過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.6.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m7.若3x>﹣3y,則下列不等式中一定成立的是()A. B. C. D.8.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.169.中華人民共和國國家統計局網站公布,2016年國內生產總值約為74300億元,將74300億用科學計數法可以表示為()A. B. C. D.10.如圖,在平面直角坐標系中,是反比例函數的圖像上一點,過點做軸于點,若的面積為2,則的值是()A.-2 B.2 C.-4 D.411.一個空間幾何體的主視圖和左視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的表面積是()A.6πB.4πC.8πD.412.若||=-,則一定是()A.非正數 B.正數 C.非負數 D.負數二、填空題:(本大題共6個小題,每小題4分,共24分.)13.2011年,我國汽車銷量超過了18500000輛,這個數據用科學記數法表示為▲輛.14.分解因式:_____.15.如圖,10塊相同的小長方形墻磚拼成一個大長方形,設小長方形墻磚的長和寬分別為x厘米和y厘米,則列出的方程組為_____.16.21世紀納米技術將被廣泛應用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學記數法表示為_______米.17.若正多邊形的一個內角等于140°,則這個正多邊形的邊數是_______.18.若式子有意義,則x的取值范圍是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點F.求證:BF=BC;若AB=4cm,AD=3cm,求CF的長.20.(6分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數軸上表示出來.21.(6分)在平面直角坐標系中,已知點A(2,0),點B(0,2),點O(0,0).△AOB繞著O順時針旋轉,得△A′OB′,點A、B旋轉后的對應點為A′、B′,記旋轉角為α.(I)如圖1,若α=30°,求點B′的坐標;(Ⅱ)如圖2,若0°<α<90°,設直線AA′和直線BB′交于點P,求證:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標的最小值(直接寫出結果即可).22.(8分)(1)計算:;(2)解不等式組:23.(8分)計算:.24.(10分)如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經過點C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結果保留和根號).25.(10分)某校為了解學生體質情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應為優(yōu)秀、良好、及格、不及格四個等級,統計員在將測試數據繪制成圖表時發(fā)現,優(yōu)秀漏統計4人,良好漏統計6人,于是及時更正,從而形成如圖圖表,請按正確數據解答下列各題:學生體能測試成績各等次人數統計表體能等級調整前人數調整后人數優(yōu)秀8良好16及格12不及格4合計40(1)填寫統計表;(2)根據調整后數據,補全條形統計圖;(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數.26.(12分)如圖1,已知直線y=kx與拋物線y=交于點A(3,6).(1)求直線y=kx的解析式和線段OA的長度;(2)點P為拋物線第一象限內的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;(3)如圖2,若點B為拋物線上對稱軸右側的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數分別是1個、2個?27.(12分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

直接利用倒數的定義結合絕對值的性質分析得出答案.【詳解】解:?的倒數為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數的定義與絕對值的性質,解題的關鍵是熟練的掌握倒數的定義與絕對值的性質.2、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.3、C【解析】

根據眾數是一組數據中出現次數最多的數,可能不止一個,對這個鞋店的經理來說,他最關注的是數據的眾數.【詳解】解:根據商店經理統計表決定本月多進尺碼為23.0cm的女式運動鞋,就說明穿23.0cm的女式運動鞋的最多,

則商店經理的這一決定應用的統計量是這組數據的眾數.

故選:C.【點睛】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的平均數、中位數、眾數各有局限性,因此要對統計量進行合理的選擇和恰當的運用.4、D【解析】

本題主要考查二次函數的解析式【詳解】解:根據二次函數的解析式形式可得,設頂點坐標為(h,k),則二次函數的解析式為y=a(x-故選D.【點睛】本題主要考查二次函數的頂點式,根據頂點的平移可得到二次函數平移后的解析式.5、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數占總情況數的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.6、C【解析】

依據題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據三角形的三邊關系即可判斷.【詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【點睛】本題主要考察了三角形三邊的關系,關鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.7、A【解析】兩邊都除以3,得x>﹣y,兩邊都加y,得:x+y>0,故選A.8、D【解析】

由AB的垂直平分MN交AC于D,根據線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【點睛】此題考查了線段垂直平分線的性質,比較簡單,注意數形結合思想與轉化思想的應用.9、D【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:74300億=7.43×1012,

故選:D.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、C【解析】

根據反比例函數k的幾何意義,求出k的值即可解決問題【詳解】解:∵過點P作PQ⊥x軸于點Q,△OPQ的面積為2,

∴||=2,

∵k<0,

∴k=-1.

故選:C.【點睛】本題考查反比例函數k的幾何意義,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考常考題型.11、A【解析】根據題意,可判斷出該幾何體為圓柱.且已知底面半徑以及高,易求表面積.解答:解:根據題目的描述,可以判斷出這個幾何體應該是個圓柱,且它的底面圓的半徑為1,高為2,那么它的表面積=2π×2+π×1×1×2=6π,故選A.12、A【解析】

根據絕對值的性質進行求解即可得.【詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數,故選A.【點睛】本題考查了絕對值的性質,熟練掌握絕對值的性質是解題的關鍵.絕對值的性質:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;1的絕對值是1.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.85×2.【解析】

根據科學記數法的定義,科學記數法的表示形式為a×20n,其中2≤|a|<20,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于2還是小于2.當該數大于或等于2時,n為它的整數位數減2;當該數小于2時,-n為它第一個有效數字前0的個數(含小數點前的2個0).【詳解】解:28500000一共8位,從而28500000=2.85×2.14、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式2后繼續(xù)應用完全平方公式分解即可:.15、【解析】

根據圖示可得:長方形的長可以表示為x+2y,長又是75厘米,故x+2y=75,長方形的寬可以表示為2x,或x+3y,故2x=3y+x,整理得x=3y,聯立兩個方程即可.【詳解】根據圖示可得,故答案是:.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是看懂圖示,分別表示出長方形的長和寬.16、1.2×10﹣1.【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10?n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10?n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.17、1【解析】試題分析:此題主要考查了多邊形的外角與內角,做此類題目,首先求出正多邊形的外角度數,再利用外角和定理求出求邊數.首先根據求出外角度數,再利用外角和定理求出邊數.∵正多邊形的一個內角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內角與外角.18、x>.【解析】解:依題意得:2x+3>1.解得x>.故答案為x>.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析,(2)CF=cm.【解析】

(1)要求證:BF=BC只要證明∠CFB=∠FCB就可以,從而轉化為證明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根據三角形的面積等于BD?CE=BC?DC,就可以求出CE的長.要求CF的長,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根據勾股定理就可以求出,由此解決問題.【詳解】證明:(1)∵四邊形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四邊形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD=.又∵BD?CE=BC?DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.【點睛】本題考查矩形的判定與性質,等腰三角形的判定定理,等角對等邊,以及勾股定理,三角形面積計算公式的運用,靈活運用已知,理清思路,解決問題.20、【解析】試題分析:按照解一元一次不等式的步驟解不等式即可.試題解析:,,.解集在數軸上表示如下點睛:解一元一次不等式一般步驟:去分母,去括號,移項,合并同類項,把系數化為1.21、(1)B'的坐標為(,3);(1)見解析;(3)﹣1.【解析】

(1)設A'B'與x軸交于點H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)證明∠BPA'=90即可;(3)作AB的中點M(1,),連接MP,由∠APB=90°,推出點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,),所以當PM⊥x軸時,點P縱坐標的最小值為﹣1.【詳解】(Ⅰ)如圖1,設A'B'與x軸交于點H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴點B'的坐標為(,3);(Ⅱ)證明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四邊形OBPA'的內角和為360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)點P縱坐標的最小值為.如圖,作AB的中點M(1,),連接MP,∵∠APB=90°,∴點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,).∴當PM⊥x軸時,點P縱坐標的最小值為﹣1.【點睛】本題考查的知識點是幾何變換綜合題,解題的關鍵是熟練的掌握幾何變換綜合題.22、(1);(2).【解析】

(1)根據冪的運算與實數的運算性質計算即可.(2)先整理為最簡形式,再解每一個不等式,最后求其解集.【詳解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式組的解集為【點睛】本題考查了實數的混合運算和解一元一次不等式組,熟練掌握和運用相關運算性質是解答關鍵.23、【解析】

根據絕對值的性質、零指數冪的性質、特殊角的三角函數值、負整數指數冪的性質、二次根式的性質及乘方的定義分別計算后,再合并即可【詳解】原式.【點睛】此題主要考查了實數運算,正確化簡各數是解題關鍵.24、(1)詳見解析;(2);【解析】

(1)連接OC,根據垂直的定義得到∠AOF=90°,根據三角形的內角和得到∠ACE=90°+∠A,根據等腰三角形的性質得到∠OCE=90°,得到OC⊥CE,于是得到結論;

(2)根據圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據扇形和三角形的面積公式即可得到結論.【詳解】:(1)連接OC,

∵OF⊥AB,

∴∠AOF=90°,

∴∠A+∠AFO+90°=180°,

∵∠ACE+∠AFO=180°,

∴∠ACE=90°+∠A,

∵OA=OC,

∴∠A=∠ACO,

∴∠ACE=90°+∠ACO=∠ACO+∠OCE,

∴∠OCE=90°,

∴OC⊥CE,

∴EM是⊙O的切線;

(2)∵AB是⊙O的直徑,

∴∠ACB=90°,

∴∠ACO+∠BCO=∠BCE+∠BCO=90°,

∴∠ACO=∠BCE,

∵∠A=∠E,

∴∠A=∠ACO=∠BCE=∠E,

∴∠ABC=∠BCO+∠E=2∠A,

∴∠A=30°,

∴∠BOC=60°,

∴△BOC是等邊三角形,

∴OB=BC=,

∴陰影部分的面積=,【點睛】本題考查了切線的判定,等腰三角形的判定和性質,扇形的面積計算,連接OC是解題的關鍵.25、(1)12;22;12;4;50;(2)詳見解析;(3)1.【解析】

(1)求出各自的人數,補全表格即可;

(2)根據調整后的數據,補全條形統計圖即可;

(3)根據“游戲”人數占的百分比,乘以1500即可得到結果.【詳解】解:(1)填表如下:體能等級調整前人數調整后人數優(yōu)秀812良好1622及格1212不及格44合計4050故答案為12;22;12;4;50;(2)補全條形統計圖,如圖所示:(3)抽取的學生中體能測試的優(yōu)秀率為24%,則該校體能測試為“優(yōu)秀”的人數為1500×24%=1(人).【點睛】本題考查了統計表與條形統計圖的知識點,解題的關鍵是熟練的掌握統計表與條形統計圖的相關知識點.26、(1)y=2x,OA=,(2)是一個定值,,(3)當時,E點只有1個,當時,E點有2個?!窘馕觥浚?)把點A(3,6)代入y=kx得;∵6=3k,∴k=2,∴y=2x.OA=.(2)是一個定值,理由如下:如答圖1,過點Q作QG⊥y軸于點G,QH⊥x軸于點H.①當QH與QM重合時,顯然QG與QN重合,此時;②當QH與QM不重合時,∵QN⊥QM,QG⊥QH不妨設點H,G分別在x、y軸的正半軸上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,當點P、Q在拋物線和直線上不同位置時,同理可得.①①如答圖2,延長AB交x軸于點F,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論