




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟寧市魚臺縣第一中學2024年高三3月份模擬考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.2.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.3.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40404.設,集合,則()A. B. C. D.5.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.6.中國古建筑借助榫卯將木構件連接起來,構件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構件右邊的小長方體是榫頭.若如圖擺放的木構件與某一帶卯眼的木構件咬合成長方體,則咬合時帶卯眼的木構件的俯視圖可以是A. B. C. D.7.若為純虛數(shù),則z=()A. B.6i C. D.208.函數(shù)f(x)=lnA. B. C. D.9.已知復數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.10.我國著名數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”(注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,則的概率是()A. B. C. D.11.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.7812.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的定義域為R,導函數(shù)為,若,且,則滿足的x的取值范圍為______.14.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.15.若,則________,________.16.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、、、八個分數(shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布.(1)求物理原始成績在區(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學期望.(附:若隨機變量,則,,)18.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍.19.(12分)選修4-5:不等式選講設函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求20.(12分)設數(shù)列,的各項都是正數(shù),為數(shù)列的前n項和,且對任意,都有,,,(e是自然對數(shù)的底數(shù)).(1)求數(shù)列,的通項公式;(2)求數(shù)列的前n項和.21.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.22.(10分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實數(shù)的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.2、A【解析】
根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.3、D【解析】
計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數(shù)列,意在考查學生的計算能力和應用能力.4、B【解析】
先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.5、B【解析】
先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.6、A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。7、C【解析】
根據(jù)復數(shù)的乘法運算以及純虛數(shù)的概念,可得結果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復數(shù)的概念與運算,屬基礎題.8、C【解析】因為fx=lnx2-4x+4x-23=9、A【解析】
對復數(shù)進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數(shù)的四則運算及虛部的概念,計算過程要注意.10、B【解析】
先列舉出不超過的素數(shù),并列舉出所有的基本事件以及事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數(shù)有:、、、、、,在不超過的素數(shù)中,隨機選取個不同的素數(shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.11、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進一步得到數(shù)列的通項公式,然后代入轉化計算,再根據(jù)等差數(shù)列求和公式計算出結果.【詳解】解:由題意得,當為奇數(shù)時,,當為偶數(shù)時,所以當為奇數(shù)時,;當為偶數(shù)時,,所以故選:D【點睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質應用,等差數(shù)列的求和公式,屬于中檔題.12、A【解析】
設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
構造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調遞減,最后利用單調性以及奇偶性化簡不等式,解得結果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數(shù)奇偶性、單調性以及利用函數(shù)性質解不等式,考查綜合分析求解能力,屬中檔題.14、1【解析】
建系,設,表示出點坐標,則,根據(jù)的范圍得出答案.【詳解】解:以為原點建立平面坐標系如圖所示:則,,,,設,則,,,,,,,顯然當取得最大值4時,取得最小值1.故答案為:1.【點睛】本題考查了平面向量的數(shù)量積運算,坐標運算,屬于中檔題.15、【解析】
根據(jù)誘導公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導公式和二倍角公式,屬于簡單題.16、【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據(jù)正態(tài)曲線的對稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績在區(qū)間內的概率,進而可求出相應的人數(shù);(Ⅱ)由題意得成績在區(qū)間[61,80]的概率為,且,由此可得的分布列和數(shù)學期望.【詳解】(Ⅰ)因為物理原始成績,所以.所以物理原始成績在(47,86)的人數(shù)為(人).(Ⅱ)由題意得,隨機抽取1人,其成績在區(qū)間[61,80]內的概率為.所以隨機抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數(shù)學期望.【點睛】(1)解答第一問的關鍵是利用正態(tài)分布的三個特殊區(qū)間表示所求概率的區(qū)間,再根據(jù)特殊區(qū)間上的概率求解,解題時注意結合正態(tài)曲線的對稱性.(2)解答第二問的關鍵是判斷出隨機變量服從二項分布,然后可得分布列及其數(shù)學期望.當被抽取的總體的容量較大時,抽樣可認為是等可能的,進而可得隨機變量服從二項分布.18、(1)(2)【解析】
利用零點分區(qū)間法,去掉絕對值符號分組討論求并集,對恒成立,則,由三角不等式,得求解【詳解】解:當時,不等式即為,可得或或,解得或或,則原不等式的解集為若對任意、都有,即為,由,當取得等號,則,由,可得,則的取值范圍是【點睛】本題考查含有兩個絕對值符號的不等式解法及利用三角不等式解恒成立問題.(1)含有兩個絕對值符號的不等式常用解法可用零點分區(qū)間法去掉絕對值符號,將其轉化為與之等價的不含絕對值符號的不等式(組)求解(2)利用三角不等式把不等式恒成立問題轉化為函數(shù)最值問題.19、(1)見解析.(1)(-1,0).【解析】試題分析:(1)直接計算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分區(qū)間討論去絕對值符號分別解不等式即可.試題解析:(1)證明:函數(shù)f(x)=|x﹣a|,a<2,則f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.當x≤a時,f(x)=a﹣x+a﹣1x=1a﹣3x,則f(x)≥﹣a;當a<x<時,f(x)=x﹣a+a﹣1x=﹣x,則﹣<f(x)<﹣a;當x時,f(x)=x﹣a+1x﹣a=3x﹣1a,則f(x)≥﹣.則f(x)的值域為[﹣,+∞).不等式f(x)+f(1x)<的解集非空,即為>﹣,解得,a>﹣1,由于a<2,則a的取值范圍是(-1,0).考點:1.含絕對值不等式的證明與解法.1.基本不等式.20、(1),(2)【解析】
(1)當時,,與作差可得,即可得到數(shù)列是首項為1,公差為1的等差數(shù)列,即可求解;對取自然對數(shù),則,即是以1為首項,以2為公比的等比數(shù)列,即可求解;(2)由(1)可得,再利用錯位相減法求解即可.【詳解】解:(1)因為,,①當時,,解得;當時,有,②由①②得,,又,所以,即數(shù)列是首項為1,公差為1的等差數(shù)列,故,又因為,且,取自然對數(shù)得,所以,又因為,所以是以1為首項,以2為公比的等比數(shù)列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點睛】本題考查由與的關系求通項公式,考查錯位相減法求數(shù)列的和.21、(1);(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技推動下的生物質能源技術進步
- 上海2024年上海市工人文化宮招聘筆試歷年參考題庫附帶答案詳解
- 社區(qū)消防安全隊伍建設與培訓計劃
- 2025浙江嘉興市博思睿招聘27人(派遣至海寧市尖山新區(qū)開發(fā)有限公司)筆試參考題庫附帶答案詳解
- 2025廣西河池市鳳山縣招聘國有企業(yè)領導班子人員考察人選筆試參考題庫附帶答案詳解
- 科技引領中醫(yī)藥在糖尿病視網(wǎng)膜病變中的應用
- 二零二五學年度兒童在校打傷同學經(jīng)濟賠償合同
- 2025年度中國人壽校園招聘火熱開啟筆試參考題庫附帶答案詳解
- 二零二五年度汽車充電樁場地租賃與充電設施維護協(xié)議
- 二零二五年度山羊養(yǎng)殖收益共享代養(yǎng)協(xié)議
- 配套課件-前廳客房服務與管理
- 2025年度藥店營業(yè)員服務規(guī)范及合同約束協(xié)議3篇
- 工業(yè)和信息化部裝備工業(yè)發(fā)展中心2025年上半年應屆畢業(yè)生招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年溫州市甌海旅游投資集團有限公司下屬子公司招聘筆試參考題庫附帶答案詳解
- 2025年天津三源電力集團有限公司招聘筆試參考題庫含答案解析
- 2025年上半年浙江嘉興桐鄉(xiāng)市水務集團限公司招聘10人易考易錯模擬試題(共500題)試卷后附參考答案
- 重慶市2024-2025學年高一上學期期末聯(lián)考生物試卷(含答案)
- (八省聯(lián)考)2025年高考綜合改革適應性演練 物理試卷合集(含答案逐題解析)
- 2025年度智能倉儲管理系統(tǒng)軟件開發(fā)合同6篇
- 緊急疏散逃生方法
- 羊水栓塞護理應急預案
評論
0/150
提交評論