陜西省興平市西郊中學2024年高考考前提分數(shù)學仿真卷含解析_第1頁
陜西省興平市西郊中學2024年高考考前提分數(shù)學仿真卷含解析_第2頁
陜西省興平市西郊中學2024年高考考前提分數(shù)學仿真卷含解析_第3頁
陜西省興平市西郊中學2024年高考考前提分數(shù)學仿真卷含解析_第4頁
陜西省興平市西郊中學2024年高考考前提分數(shù)學仿真卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省興平市西郊中學2024年高考考前提分數(shù)學仿真卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.262.函數(shù)的圖象可能為()A. B.C. D.3.已知函數(shù),不等式對恒成立,則的取值范圍為()A. B. C. D.4.已知正四棱錐的側棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.5.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.6.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.7.已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知復數(shù)滿足,則()A. B. C. D.9.設i為數(shù)單位,為z的共軛復數(shù),若,則()A. B. C. D.10.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.311.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.2712.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,.若,則_________.14.若函數(shù)為奇函數(shù),則_______.15.設等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.16.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.18.(12分)如圖,在斜三棱柱中,側面與側面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.19.(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,,設數(shù)列的前項和為,求大于的最小的正整數(shù)的值.20.(12分)設數(shù)列,其前項和,又單調遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.21.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.22.(10分)設數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點睛】本題考查組合的應用,此類問題注意實際問題的合理轉化,本題屬于容易題.2、C【解析】

先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎題.3、C【解析】

確定函數(shù)為奇函數(shù),且單調遞減,不等式轉化為,利用雙勾函數(shù)單調性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調遞減,不等式,即,結合函數(shù)的單調性可得,即,設,,故單調遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據(jù)函數(shù)單調性和奇偶性解不等式,參數(shù)分離求最值是解題的關鍵.4、C【解析】試題分析:設的交點為,連接,則為所成的角或其補角;設正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.5、A【解析】

設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.6、A【解析】

根據(jù)是中點這一條件,將棱錐的高轉化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.7、C【解析】

根據(jù)直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.8、A【解析】

由復數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數(shù)的運算.屬于簡單題.9、A【解析】

由復數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數(shù)的乘除法運算,考查共軛復數(shù)的概念,掌握復數(shù)的運算法則是解題關鍵.10、A【解析】

根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結果,屬于簡單題.11、D【解析】

設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.12、C【解析】

由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經(jīng)過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數(shù)的定義,對邊比臨邊,求得對應角的正切值,即可得結果.詳解:根據(jù)題意,設,則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結果.14、-2【解析】

由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數(shù)性質的應用,考查學生的計算求解能力,屬于基礎題.15、2【解析】

直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學生的計算能力.16、【解析】

取的中點為M,由可得,可得M在上,當最小時,弦的長才最大.【詳解】設為的中點,,即,即,,.設,則,得.所以,.故答案為:【點睛】本題考查直線與圓的位置關系的綜合應用,考查學生的邏輯推理、數(shù)形結合的思想,是一道有一定難度的題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.18、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標系,則,,,設平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.19、(1)(2)4【解析】

(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項,,設數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.【點睛】本題考查等差數(shù)列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數(shù)列通項的思路(1)在等差數(shù)列中,是最基本的兩個量,一般可設出和,利用等差數(shù)列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式20、(1),;(2)詳見解析.【解析】

(1)當時,,當時,,當時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)21、(1)(2)【解析】

(1)通過討論的范圍,得到關于的不等式組,解出取并集即可.(2)去絕對值將函數(shù)寫成分段函數(shù)形式討論分段函數(shù)的單調性由恒成立求得結果.【詳解】解:(1)當時,,即或或解之得或,即不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論