![2023-2024學(xué)年四川省綿陽市江油中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view12/M0A/30/18/wKhkGWZATa2AVfBbAAJoCVt6k_k227.jpg)
![2023-2024學(xué)年四川省綿陽市江油中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view12/M0A/30/18/wKhkGWZATa2AVfBbAAJoCVt6k_k2272.jpg)
![2023-2024學(xué)年四川省綿陽市江油中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view12/M0A/30/18/wKhkGWZATa2AVfBbAAJoCVt6k_k2273.jpg)
![2023-2024學(xué)年四川省綿陽市江油中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view12/M0A/30/18/wKhkGWZATa2AVfBbAAJoCVt6k_k2274.jpg)
![2023-2024學(xué)年四川省綿陽市江油中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view12/M0A/30/18/wKhkGWZATa2AVfBbAAJoCVt6k_k2275.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年四川省綿陽市江油中學(xué)高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.已知,滿足約束條件,則的最大值為A. B. C. D.3.已知全集,則集合的子集個(gè)數(shù)為()A. B. C. D.4.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.20175.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.6.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.7.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.278.框圖與程序是解決數(shù)學(xué)問題的重要手段,實(shí)際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計(jì)算一組數(shù)據(jù)的方差,設(shè)計(jì)了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,9.已知全集,集合,則()A. B. C. D.10.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點(diǎn),若,則實(shí)數(shù)的值為()A.1 B.2 C.-1 D.-211.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度12.在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.11二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù),且滿足(其中為虛數(shù)單位),則____.14.已知等差數(shù)列的前n項(xiàng)和為,,,則=_______.15.已知等比數(shù)列的各項(xiàng)均為正數(shù),,則的值為________.16.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.18.(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.19.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵(lì)工人提高技術(shù),工廠進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級(jí)優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級(jí)一樣,則兩方都不得分,當(dāng)一方總分為4分時(shí),比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時(shí),最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.20.(12分)如圖,在直角梯形中,,,,為的中點(diǎn),沿將折起,使得點(diǎn)到點(diǎn)位置,且,為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說明理由.21.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個(gè)零點(diǎn),且;(2)若當(dāng)時(shí),不等式恒成立,求證:.22.(10分)已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線過點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】命題p:,為,又為真命題的充分不必要條件為,故2、D【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.3、C【解析】
先求B.再求,求得則子集個(gè)數(shù)可求【詳解】由題=,則集合,故其子集個(gè)數(shù)為故選C【點(diǎn)睛】此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個(gè)數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題4、B【解析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.【點(diǎn)睛】本題考查了數(shù)列和的最值問題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.5、A【解析】
設(shè),延長(zhǎng)至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【詳解】設(shè),延長(zhǎng)至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補(bǔ)角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點(diǎn)睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.6、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)?,?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、D【解析】
設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點(diǎn)睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.8、A【解析】
依題意問題是,然后按直到型驗(yàn)證即可.【詳解】根據(jù)題意為了計(jì)算7個(gè)數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.9、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.10、D【解析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個(gè)圓心的連線上,從而可求.【詳解】因?yàn)?,所以O(shè)在AB的中垂線上,即O在兩個(gè)圓心的連線上,,,三點(diǎn)共線,所以,得,故選D.【點(diǎn)睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.11、C【解析】
依題意可得,且是的一條對(duì)稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計(jì)算可得;【詳解】解:由已知得,是的一條對(duì)稱軸,且使取得最值,則,,,,故選:C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.12、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長(zhǎng)度以及使不等式成立的的范圍區(qū)間長(zhǎng)度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長(zhǎng)度為6,使得成立的的范圍為,區(qū)間長(zhǎng)度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識(shí)點(diǎn)有長(zhǎng)度型幾何概型概率公式,等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
計(jì)算出,兩個(gè)復(fù)數(shù)相等,實(shí)部與實(shí)部相等,虛部與虛部相等,列方程組求解.【詳解】,所以,所以.故答案為:-8【點(diǎn)睛】此題考查復(fù)數(shù)的基本運(yùn)算和概念辨析,需要熟練掌握復(fù)數(shù)的運(yùn)算法則.14、【解析】
利用求出公差,結(jié)合等差數(shù)列的通項(xiàng)公式可求.【詳解】設(shè)公差為,因?yàn)?,所以,?所以.故答案為:【點(diǎn)睛】本題主要考查等差數(shù)列通項(xiàng)公式的求解,利用等差數(shù)列的基本量是求解這類問題的通性通法,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】
運(yùn)用等比數(shù)列的通項(xiàng)公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】試題分析:根據(jù)題意,記白球?yàn)锳,紅球?yàn)锽,黃球?yàn)椋瑒t一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點(diǎn):古典概型概率三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問題進(jìn)行等價(jià)轉(zhuǎn)化為,,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實(shí)數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當(dāng)時(shí),,當(dāng)時(shí),在上恒成立,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),由得:;由得:.∴當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對(duì)任意的和,恒成立等價(jià)于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴當(dāng)時(shí),,即又∵,∴實(shí)數(shù)的取值范圍是:.【點(diǎn)睛】本題主要考查導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和恒成立問題,考查分類討論的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),屬于中等題.18、(1)證明見詳解;(2)或或【解析】
(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因?yàn)樗裕?)當(dāng)時(shí)所以當(dāng)且僅當(dāng)即時(shí)等號(hào)成立因?yàn)榇嬖冢?,使得成立所以所以或解得:或或【點(diǎn)睛】1.要熟練掌握絕對(duì)值的三角不等式,即2.應(yīng)用基本不等式求最值時(shí)要滿足“一正二定三相等”.19、(1)乙的技術(shù)更好,見解析(2)①,;②【解析】
(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設(shè)每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【詳解】(1)記甲乙各生產(chǎn)一件零件給工廠帶來的效益分別為元、元,隨機(jī)變量,的分布列分別為10521052所以,,所以,即乙的技術(shù)更好(2)①表示的是甲得分時(shí),甲最終獲勝的概率,所以,表示的是甲得4分時(shí),甲最終獲勝的概率,所以;②設(shè)每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時(shí),最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數(shù)列,則,即決賽甲獲勝的概率是.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列和期望,考查數(shù)列遞推關(guān)系的應(yīng)用,是一道難度較大的題目.20、(Ⅰ)見解析(Ⅱ)存在,此時(shí)為的中點(diǎn).【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設(shè)存在點(diǎn)滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設(shè),,計(jì)算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設(shè)存在點(diǎn)滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設(shè),則,在中,設(shè)(),由得,即,得,∴,依題意知,即,解得,此時(shí)為的中點(diǎn).綜上知,存在點(diǎn),使得二面角的余弦值,此時(shí)為的中點(diǎn).【點(diǎn)睛】本題考查了面面垂直,根據(jù)二面角確定點(diǎn)的位置,意在考查學(xué)生的空間想象能力和計(jì)算能力,也可以建立空間直角坐標(biāo)系解得答案.21、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號(hào),即可證明結(jié)論;(2)當(dāng)時(shí),不等式恒成立,分離參數(shù)只需時(shí),恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導(dǎo)數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因?yàn)椋栽趨^(qū)間上有且僅有一個(gè)零點(diǎn),且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當(dāng)時(shí),;當(dāng)時(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年公司注銷委托代理服務(wù)協(xié)議
- 2025年信用擔(dān)保與抵押合同
- 2025年農(nóng)副產(chǎn)品直銷業(yè)務(wù)協(xié)議
- 2025年農(nóng)業(yè)用地承包權(quán)抵債協(xié)議范本
- 2025年優(yōu)惠協(xié)議價(jià)格
- 2025年會(huì)議室重構(gòu)性合作協(xié)議
- 2025年光通信電纜項(xiàng)目規(guī)劃申請(qǐng)報(bào)告范文
- 2025年信息安全集成項(xiàng)目合作協(xié)議
- 2025年個(gè)人財(cái)產(chǎn)抵押巨額借款合同示范文本
- 2025年企業(yè)電器租賃合同
- 2024-2025學(xué)年成都市石室聯(lián)中七年級(jí)上英語期末考試題(含答案)
- 2025年度服務(wù)外包合同:銀行呼叫中心服務(wù)外包協(xié)議3篇
- 7.1力教學(xué)課件-2024-2025學(xué)年初中物理人教版八年級(jí)下冊(cè)
- 【課件】跨學(xué)科實(shí)踐制作微型密度計(jì)++課件人教版物理八年級(jí)下冊(cè)
- 北師大版五年級(jí)數(shù)學(xué)下冊(cè)第4課時(shí)體積單位的換算課件
- 電解質(zhì)溶液的圖像分析(原卷版)-2025年高考化學(xué)一輪復(fù)習(xí)講義(新教材新高考)
- 2025年中考?xì)v史一輪復(fù)習(xí)知識(shí)清單:隋唐時(shí)期
- Module 2 Unit 2 I dont like ginger. (說課稿)-2024-2025學(xué)年外研版(一起)英語二年級(jí)上冊(cè)
- 2025年新高考語文模擬考試試卷(五) (含答案解析)
- 教育部《中小學(xué)校園食品安全和膳食經(jīng)費(fèi)管理工作指引》專題培訓(xùn)
- 瞻望病人的護(hù)理
評(píng)論
0/150
提交評(píng)論