甘肅省寧縣二中2024年高三第一次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
甘肅省寧縣二中2024年高三第一次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
甘肅省寧縣二中2024年高三第一次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
甘肅省寧縣二中2024年高三第一次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
甘肅省寧縣二中2024年高三第一次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

甘肅省寧縣二中2024年高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.3.如圖是國(guó)家統(tǒng)計(jì)局于2020年1月9日發(fā)布的2018年12月到2019年12月全國(guó)居民消費(fèi)價(jià)格的漲跌幅情況折線圖.(注:同比是指本期與同期作對(duì)比;環(huán)比是指本期與上期作對(duì)比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是()A.2019年12月份,全國(guó)居民消費(fèi)價(jià)格環(huán)比持平B.2018年12月至2019年12月全國(guó)居民消費(fèi)價(jià)格環(huán)比均上漲C.2018年12月至2019年12月全國(guó)居民消費(fèi)價(jià)格同比均上漲D.2018年11月的全國(guó)居民消費(fèi)價(jià)格高于2017年12月的全國(guó)居民消費(fèi)價(jià)格4.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.65.在平面直角坐標(biāo)系中,銳角頂點(diǎn)在坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊與單位圓交于點(diǎn),則()A. B. C. D.6.函數(shù)的大致圖象是()A. B.C. D.7.下列四個(gè)結(jié)論中正確的個(gè)數(shù)是(1)對(duì)于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.48.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}9.已知、分別是雙曲線的左、右焦點(diǎn),過(guò)作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點(diǎn)、,過(guò)點(diǎn)作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.10.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或711.如圖,設(shè)為內(nèi)一點(diǎn),且,則與的面積之比為A. B.C. D.12.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為,為中點(diǎn),則三棱錐的體積為_(kāi)_______.14.的二項(xiàng)展開(kāi)式中,含項(xiàng)的系數(shù)為_(kāi)_________.15.的展開(kāi)式中含的系數(shù)為_(kāi)_________.(用數(shù)字填寫答案)16.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個(gè)點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開(kāi)一壺水所用時(shí)間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).表中,.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間y關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說(shuō)明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時(shí)間內(nèi)煤氣輸出量t成正比,那么x為多少時(shí),燒開(kāi)一壺水最省煤氣?附:對(duì)于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.18.(12分)如圖,在直角中,,,,點(diǎn)在線段上.(1)若,求的長(zhǎng);(2)點(diǎn)是線段上一點(diǎn),,且,求的值.19.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點(diǎn)是射線與直線的公共點(diǎn),點(diǎn)是與曲線的公共點(diǎn),求的最大值.20.(12分)為迎接2022年冬奧會(huì),北京市組織中學(xué)生開(kāi)展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學(xué)生的考核成績(jī)?cè)趨^(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.21.(12分)某貧困地區(qū)幾個(gè)丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開(kāi)鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.(1)當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度;(2)當(dāng)公路的長(zhǎng)度最短時(shí),設(shè)公路交軸,軸分別為,兩點(diǎn),并測(cè)得四邊形中,,,千米,千米,求應(yīng)開(kāi)鑿的隧道的長(zhǎng)度.22.(10分)如圖,在棱長(zhǎng)為的正方形中,,分別為,邊上的中點(diǎn),現(xiàn)以為折痕將點(diǎn)旋轉(zhuǎn)至點(diǎn)的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷.解:根據(jù)題意,由于α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個(gè)平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點(diǎn):必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.2、A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問(wèn)題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.3、D【解析】

先對(duì)圖表數(shù)據(jù)的分析處理,再結(jié)簡(jiǎn)單的合情推理一一檢驗(yàn)即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國(guó)居民消費(fèi)價(jià)格環(huán)比是負(fù)的,所以B錯(cuò)誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國(guó)居民消費(fèi)價(jià)格分別為,由題意可知,,,則有,所以D正確.故選:D【點(diǎn)睛】此題考查了對(duì)圖表數(shù)據(jù)的分析處理能力及進(jìn)行簡(jiǎn)單的合情推理,屬于中檔題.4、D【解析】

作,垂足為,過(guò)點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過(guò)點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)?,所以為線段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.5、A【解析】

根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點(diǎn)在于公式的計(jì)算,識(shí)記公式,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.6、A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.【點(diǎn)睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.7、C【解析】

由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯(cuò)誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對(duì)稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,可得回歸直線方程為是正確;(4)中,當(dāng)時(shí),可得成立,當(dāng)時(shí),只需滿足,所以“”是“”成立的充分不必要條件.【點(diǎn)睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識(shí)點(diǎn)的應(yīng)用,逐項(xiàng)判定是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.8、C【解析】

先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.9、B【解析】

設(shè)點(diǎn)位于第二象限,可求得點(diǎn)的坐標(biāo),再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進(jìn)而可求得雙曲線的離心率.【詳解】設(shè)點(diǎn)位于第二象限,由于軸,則點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為,即點(diǎn),由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算,解答的關(guān)鍵就是得出、、的等量關(guān)系,考查計(jì)算能力,屬于中等題.10、C【解析】

根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡(jiǎn)即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡(jiǎn)可得.∴解得.故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.11、A【解析】

作交于點(diǎn),根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點(diǎn),則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點(diǎn)睛】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線是本題的關(guān)鍵.12、C【解析】

根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因?yàn)?,所以有解,即有解,所以,得,,所以,又因?yàn)?,所以,即,可化為,因?yàn)?,所以的解集包含,所以或,解得,故選:C【點(diǎn)睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

試題分析:因?yàn)檎庵牡酌孢呴L(zhǎng)為,側(cè)棱長(zhǎng)為為中點(diǎn),所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點(diǎn):幾何體的體積的計(jì)算.14、【解析】

寫出二項(xiàng)展開(kāi)式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開(kāi)式、需熟記二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.15、【解析】由題意得,二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,則,所以得系數(shù)為.16、【解析】

先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡(jiǎn)即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問(wèn)題,涉及到距離的最值問(wèn)題,在處理這類問(wèn)題時(shí),一定要數(shù)形結(jié)合,本題屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)更適宜(2)(3)x為2時(shí),燒開(kāi)一壺水最省煤氣【解析】

(1)根據(jù)散點(diǎn)圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關(guān)于的線性回歸方程,再得出y關(guān)于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時(shí)間y關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設(shè),則煤氣用量,當(dāng)且僅當(dāng)時(shí)取“”,即時(shí),煤氣用量最小.故x為2時(shí),燒開(kāi)一壺水最省煤氣.【點(diǎn)睛】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.18、(1)3;(2).【解析】

(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因?yàn)椋?,解?在中,由余弦定理得,,即,,故.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,考查學(xué)生的計(jì)算能力,是一道中檔題.19、(1),;(2)【解析】

(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標(biāo)方程;(2)寫出點(diǎn)M和點(diǎn)N的極坐標(biāo),根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標(biāo)方程為,,極坐標(biāo)方程.(2)由題可知,,當(dāng)時(shí),.【點(diǎn)睛】本題考查了參數(shù)方程、普通方程和極坐標(biāo)方程的互化問(wèn)題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.20、(Ⅰ)(Ⅱ)(Ⅲ)見(jiàn)解析【解析】

(Ⅰ)根據(jù)莖葉圖求出滿足條件的概率即可;(Ⅱ)結(jié)合圖表得到6人中有2個(gè)人考核為優(yōu),從而求出滿足條件的概率即可;(Ⅲ)求出滿足的成績(jī)有16個(gè),求出滿足條件的概率即可.【詳解】解:(Ⅰ)設(shè)這名學(xué)生考核優(yōu)秀為事件,由莖葉圖中的數(shù)據(jù)可以知道,30名同學(xué)中,有7名同學(xué)考核優(yōu)秀,所以所求概率約為(Ⅱ)設(shè)從圖中考核成績(jī)滿足的學(xué)生中任取2人,至少有一人考核成績(jī)優(yōu)秀為事件,因?yàn)楸碇谐煽?jī)?cè)诘?人中有2個(gè)人考核為優(yōu),所以基本事件空間包含15個(gè)基本事件,事件包含9個(gè)基本事件,所以(Ⅲ)根據(jù)表格中的數(shù)據(jù),滿足的成績(jī)有16個(gè),所以所以可以認(rèn)為此次冰雪培訓(xùn)活動(dòng)有效.【點(diǎn)睛】本題考查了莖葉圖問(wèn)題,考查概率求值以及轉(zhuǎn)化思想,是一道常規(guī)題.21、(1)當(dāng)時(shí),公路的長(zhǎng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論