2023-2024學年江西省贛州市南康區(qū)中考數(shù)學考前最后一卷含解析_第1頁
2023-2024學年江西省贛州市南康區(qū)中考數(shù)學考前最后一卷含解析_第2頁
2023-2024學年江西省贛州市南康區(qū)中考數(shù)學考前最后一卷含解析_第3頁
2023-2024學年江西省贛州市南康區(qū)中考數(shù)學考前最后一卷含解析_第4頁
2023-2024學年江西省贛州市南康區(qū)中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年江西省贛州市南康區(qū)中考數(shù)學考前最后一卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.當函數(shù)y=(x-1)2-2的函數(shù)值y隨著x的增大而減小時,x的取值范圍是()A. B. C. D.x為任意實數(shù)2.如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.243.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(

)A. B. C. D.4.計算x﹣2y﹣(2x+y)的結(jié)果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y5.如圖,將邊長為3a的正方形沿虛線剪成兩塊正方形和兩塊長方形.若拿掉邊長2b的小正方形后,再將剩下的三塊拼成一塊矩形,則這塊矩形較長的邊長為()A.3a+2b B.3a+4b C.6a+2b D.6a+4b6.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為()A. B. C. D.7.某校對初中學生開展的四項課外活動進行了一次抽樣調(diào)查(每人只參加其中的一項活動),調(diào)查結(jié)果如圖所示,根據(jù)圖形所提供的樣本數(shù)據(jù),可得學生參加科技活動的頻率是()A.0.15 B.0.2 C.0.25 D.0.38.如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長為()A.1 B.2 C.3 D.49.如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.10.今年3月5日,十三屆全國人大一次會議在人民大會堂開幕,會議聽取了國務院總理李克強關(guān)于政府工作的報告,其中表示,五年來,人民生活持續(xù)改善,脫貧攻堅取得決定性進展,貧困人口減少6800多萬,易地扶貧搬遷830萬人,貧困發(fā)生率由10.2%下降到3.1%,將830萬用科學記數(shù)法表示為()A.83×105 B.0.83×106 C.8.3×106 D.8.3×107二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計算AE的長度等于_____.12.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是______.13.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于_____.14.在四張背面完全相同的卡片上分別印有等腰三角形、平行四邊形、菱形和圓的圖案,現(xiàn)將印有圖案的一面朝下,混合后從中隨機抽取兩張,則抽到卡片上印有圖案都是軸對稱圖形的概率為_____.15.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一段記載:“三百七十八里關(guān),初日健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意是:有人要去某關(guān)口,路程為378里,第一天健步行走,從第二天起,由于腳痛,每天走的路程都為前一天的一半,一共走了六天才到達目的地.求此人第六天走的路程為多少里.設此人第六天走的路程為x里,依題意,可列方程為________.16.如圖,已知直線l:y=x,過點(2,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1作x軸的垂線交直線l于N1,過點N1作直線l的垂線交x軸于點M2,……;按此做法繼續(xù)下去,則點M2000的坐標為______________.三、解答題(共8題,共72分)17.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.18.(8分)如圖,某中學數(shù)學課外學習小組想測量教學樓的高度,組員小方在處仰望教學樓頂端處,測得,小方接著向教學樓方向前進到處,測得,已知,,.(1)求教學樓的高度;(2)求的值.19.(8分)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.求證:△ACE≌△BCD;若AD=5,BD=12,求DE的長.20.(8分)如圖,在中,,是邊上的高線,平分交于點,經(jīng)過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.21.(8分)如圖,在平面直角坐標系xOy中,直線與函數(shù)的圖象的兩個交點分別為A(1,5),B.(1)求,的值;(2)過點P(n,0)作x軸的垂線,與直線和函數(shù)的圖象的交點分別為點M,N,當點M在點N下方時,寫出n的取值范圍.22.(10分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標與直線l的表達式;(2)①直接寫出點D的坐標(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.23.(12分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.24.已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:利用二次函數(shù)的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當x<1時,函數(shù)值y隨著x的增大而減?。还蔬xB.點睛:本題主要考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).2、B【解析】

根據(jù)圖象可知點P在BC上運動時,此時BP不斷增大,而從C向A運動時,BP先變小后變大,從而可求出BC與AC的長度.【詳解】解:根據(jù)圖象可知點P在BC上運動時,此時BP不斷增大,

由圖象可知:點P從B向C運動時,BP的最大值為5,即BC=5,

由于M是曲線部分的最低點,

∴此時BP最小,即BP⊥AC,BP=4,

∴由勾股定理可知:PC=3,

由于圖象的曲線部分是軸對稱圖形,

∴PA=3,

∴AC=6,

∴△ABC的面積為:×4×6=12.故選:B.【點睛】本題考查動點問題的函數(shù)圖象,解題關(guān)鍵是注意結(jié)合圖象求出BC與AC的長度,本題屬于中等題型.3、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關(guān)鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.4、C【解析】

原式去括號合并同類項即可得到結(jié)果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關(guān)鍵.5、A【解析】

根據(jù)這塊矩形較長的邊長=邊長為3a的正方形的邊長-邊長為2b的小正方形的邊長+邊長為2b的小正方形的邊長的2倍代入數(shù)據(jù)即可.【詳解】依題意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故這塊矩形較長的邊長為3a+2b.故選A.【點睛】本題主要考查矩形、正方形和整式的運算,熟讀題目,理解題意,清楚題中的等量關(guān)系是解答本題的關(guān)鍵.6、C【解析】

根據(jù)已知三點和近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0)可以大致畫出函數(shù)圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數(shù)據(jù)描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉(zhuǎn)角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節(jié)省燃氣.故選:C,【點睛】本題考查了二次函數(shù)的應用,二次函數(shù)的圖像性質(zhì),熟練掌握二次函數(shù)圖像對稱性質(zhì),判斷對稱軸位置是解題關(guān)鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.7、B【解析】讀圖可知:參加課外活動的人數(shù)共有(15+30+20+35)=100人,其中參加科技活動的有20人,所以參加科技活動的頻率是=0.2,故選B.8、A【解析】試題分析:由角平分線和線段垂直平分線的性質(zhì)可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考點:線段垂直平分線的性質(zhì)9、D【解析】

連接EB,設圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識,綜合程度較高,屬于中等題型.10、C【解析】

科學記數(shù)法,是指把一個大于10(或者小于1)的整數(shù)記為a×10n的形式(其中1≤|a|<10|)的記數(shù)法.【詳解】830萬=8300000=8.3×106.故選C【點睛】本題考核知識點:科學記數(shù)法.解題關(guān)鍵點:理解科學記數(shù)法的意義.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】

根據(jù)題意、解直角三角形、菱形的性質(zhì)、翻折變化可以求得AE的長.【詳解】由題意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等邊三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四邊形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案為2.【點睛】本題考查翻折變化、平行線的性質(zhì)、直角三角形斜邊上的中線,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.12、【解析】

利用特殊三角形的三邊關(guān)系,求出AM,AE長,求比值.【詳解】解:如圖所示,設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.【點睛】特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數(shù)值或者勾股定理可快速求出邊的實際關(guān)系.13、40°.【解析】

∵將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.14、【解析】

用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽到卡片上印有圖案都是軸對稱圖形的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖:共有12種等可能的結(jié)果數(shù),其中抽到卡片上印有圖案都是軸對稱圖形的結(jié)果數(shù)為6,所以抽到卡片上印有圖案都是軸對稱圖形的概率.故答案為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.也考查了軸對稱圖形.15、;【解析】

設第一天走了x里,則第二天走了里,第三天走了里…第六天走了里,根據(jù)總路程為378里列出方程可得答案.【詳解】解:設第一天走了x里,則第二天走了里,第三天走了里…第六天走了里,依題意得:,故答案:.【點睛】本題主要考查由實際問題抽象出一元一次方程.16、(24001,0)【解析】分析:根據(jù)直線l的解析式求出,從而得到根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出然后表示出與的關(guān)系,再根據(jù)點在x軸上,即可求出點M2000的坐標詳解:∵直線l:∴∵NM⊥x軸,M1N⊥直線l,∴∴同理,…,所以,點的坐標為點M2000的坐標為(24001,0).故答案為:(24001,0).點睛:考查了一次函數(shù)圖象上點的坐標特征,根據(jù)點的坐標求線段的長度,以及如何根據(jù)線段的長度求出點的坐標,注意各相關(guān)知識的綜合應用.三、解答題(共8題,共72分)17、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.18、(1)12m;(2)【解析】

(1)利用即可求解;(2)通過三角形外角的性質(zhì)得出,則,設,則,在中利用勾股定理即可求出BC,BD的長度,最后利用即可求解.【詳解】解:(1)在中,,答:教學樓的高度為;(2)設,則,故,解得:,則故.【點睛】本題主要考查解直角三角形,掌握勾股定理及正切,余弦的定義是解題的關(guān)鍵.19、(1)證明見解析(2)13【解析】

(1)先根據(jù)同角的余角相等得到∠ACE=∠BCD,再結(jié)合等腰直角三角形的性質(zhì)即可證得結(jié)論;(2)根據(jù)全等三角形的性質(zhì)可得AE=BD,∠EAC=∠B=45°,即可證得△AED是直角三角形,再利用勾股定理即可求出DE的長.【詳解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形【點睛】解答本題的關(guān)鍵是熟練掌握全等三角形的性質(zhì):全等三角形的對應邊相等、對應角相等.20、(1)見解析;(2)的半徑是.【解析】

(1)連結(jié),易證,由于是邊上的高線,從而可知,所以是的切線.(2)由于,從而可知,由,可知:,易證,所以,再證明,所以,從而可求出.【詳解】解:(1)連結(jié).∵平分,∴,又,∴,∴,∵是邊上的高線,∴,∴,∴是的切線.(2)∵,∴,,∴是中點,∴,∵,∴,∵,,∴,∴,又∵,∴,在中,,∴,∴,,而,∴,∴,∴的半徑是.【點睛】本題考查圓的綜合問題,涉及銳角三角函數(shù),相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)等知識,綜合程度較高,需要學生綜合運用知識的能力.21、(1),;(2)0<n<1或者n>1.【解析】

(1)利用待定系數(shù)法即可解決問題;(2)利用圖象法即可解決問題;【詳解】解:(1)∵A(1,1)在直線上,∴,∵A(1,1)在的圖象上,∴.(2)觀察圖象可知,滿足條件的n的值為:0<n<1或者n>1.【點睛】此題考查待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,解題關(guān)鍵在于利用數(shù)形結(jié)合的思想求解.22、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】

(1)當y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達式;(2)分當點M在AO上運動時,當點M在OB上運動時,進行討論可求D點坐標,將D點坐標代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當點M在AO上運動時,即0<t<3時,當點M在OB上運動時,即3≤t≤4時,進行討論可求P點坐標.【詳解】(1)當y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側(cè),∴A(﹣3,0),B(1,0),由解析式得C(0,),設直線l的表達式為y=kx+b,將B,C兩點坐標代入得b=mk﹣,故直線l的表達式為y=﹣x+;(2)當點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M在AB上運動,∴當CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最??;(3)當點M在AO上運動時,如圖,即0<t<3時,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,過點P作x軸的垂線交于點Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當點M在OB上運動時,即3≤t≤4時,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論