版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省德州市重點中學2024年高考臨考沖刺數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.52.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.3.復數滿足(為虛數單位),則的值是()A. B. C. D.4.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.295.函數的圖象大致是()A. B.C. D.6.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.7.定義在上的函數滿足,則()A.-1 B.0 C.1 D.28.在中,,分別為,的中點,為上的任一點,實數,滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.9.已知是等差數列的前項和,,,則()A.85 B. C.35 D.10.已知函數,其中,若恒成立,則函數的單調遞增區(qū)間為()A. B.C. D.11.若(是虛數單位),則的值為()A.3 B.5 C. D.12.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.2二、填空題:本題共4小題,每小題5分,共20分。13.函數的值域為_____.14.設數列為等差數列,其前項和為,已知,,若對任意都有成立,則的值為__________.15.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.16.在中,,點是邊的中點,則__________,________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為2,且過點.(1)求橢圓的方程;(2)設為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,(ⅰ)證明:平分線段(其中為坐標原點);(ⅱ)當取最小值時,求點的坐標.18.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.19.(12分)已知是拋物線的焦點,點在軸上,為坐標原點,且滿足,經過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.20.(12分)在極坐標系中,已知曲線,.(1)求曲線、的直角坐標方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.21.(12分)己知,函數.(1)若,解不等式;(2)若函數,且存在使得成立,求實數的取值范圍.22.(10分)在中,.(Ⅰ)求角的大?。唬á颍┤?,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.2、D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.3、C【解析】
直接利用復數的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復數的除法的運算法則的應用,考查計算能力.4、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D【點睛】考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.5、C【解析】
根據函數奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數為奇函數,∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據函數解析式選擇函數圖象,注意奇偶性及特殊值的用法,屬于基礎題.6、A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.7、C【解析】
推導出,由此能求出的值.【詳解】∵定義在上的函數滿足,∴,故選C.【點睛】本題主要考查函數值的求法,解題時要認真審題,注意函數性質的合理運用,屬于中檔題.8、D【解析】
根據三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.9、B【解析】
將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數列通項公式的基本量計算,考查等差數列前項和的計算,屬于基礎題.10、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數的單調區(qū)間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.11、D【解析】
直接利用復數的模的求法的運算法則求解即可.【詳解】(是虛數單位)可得解得本題正確選項:【點睛】本題考查復數的模的運算法則的應用,復數的模的求法,考查計算能力.12、A【解析】
對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用配方法化簡式子,可得,然后根據觀察法,可得結果.【詳解】函數的定義域為所以函數的值域為故答案為:【點睛】本題考查的是用配方法求函數的值域問題,屬基礎題。14、【解析】
由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數的基本性質求出的最大值及其對應的值,即可得解.【詳解】設等差數列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數列的最大值,因此,.故答案為:.【點睛】本題考查等差數列前項和最值的計算,一般利用二次函數的基本性質求解,考查計算能力,屬于中等題.15、【解析】
取的中點,設等邊三角形的中心為,連接.根據等邊三角形的性質可求得,,由等腰直角三角形的性質,得,根據面面垂直的性質得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點,設等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點睛】本題考查三棱錐的外接球的表面積,關鍵在于根據三棱錐的面的關系、棱的關系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.16、2【解析】
根據正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數量積的應用,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(ⅰ)見解析(ⅱ)點的坐標為.【解析】
(1)由題意得,再由的關系求出,即可得橢圓的標準方程;(2)(i)設,的中點為,,設直線的方程為,代入橢圓方程中,運用根與系數的關系和中點坐標公式,結合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數的單調性,可得取最小值時的條件獲得等量關系,從而確定點的坐標.【詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設,的中點為,(?。┳C明:由,可設直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當取最小值時,點的坐標為【點睛】此題考那可是橢圓方程和性質,主要考查橢圓方程的運用,運用根與系數的關系和中點坐標公式,同時考查弦長公式,屬于較難題.18、(1);(2)【解析】
(1)通過正弦定理和內角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達式后即可求出b的值.【詳解】(1)由三角形內角和定理及誘導公式,得,結合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設,得,從而,由余弦定理,得,即,又,所以,解得.【點睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎題.19、(1);(2).【解析】
(1)求得點的坐標,可得出直線的方程,與拋物線的方程聯立,結合求出正實數的值,進而可得出拋物線的方程;(2)設點,,設的方程為,將直線的方程與拋物線的方程聯立,列出韋達定理,結合求得的值,可得出直線所過定點的坐標,由此可得出點到直線的最大距離.【詳解】(1)易知點,又,所以點,則直線的方程為.聯立,解得或,所以.故拋物線的方程為;(2)設的方程為,聯立有,設點,,則,所以.所以,解得.所以直線的方程為,恒過點.又點,故當直線與軸垂直時,點到直線的最大距離為.【點睛】本題考查拋物線方程的求解,同時也考查了拋物線中最值問題的求解,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.20、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標方程與直角坐標方程之間的轉換關系可將曲線的方程化為直角坐標方程,進而可判斷出曲線的形狀,在曲線的方程兩邊同時乘以得,由可將曲線的方程化為直角坐標方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點在直線上,直線過圓的圓心.因此,是圓的直徑,.【點睛】本題考查曲線的極坐標方程與直角坐標方程之間的轉化,同時也考查了直線截圓所得弦長的計算,考查計算能力,屬于基礎題.21、(1);(2)【解析】
(1)零點分段解不等式即可(2)等價于,由,得不等式即可求解【詳解】(1)當時,,當時,由,解得;當時,由,解得;當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能化廠房股權交易完整合作協議4篇
- 2025年度安防監(jiān)控產品全國市場推廣合作協議4篇
- 2025年度農產品加工廠房出租服務協議4篇
- 2025年度柴油購銷與新能源項目合作合同4篇
- 2025年度文化創(chuàng)意產業(yè)園區(qū)廠房租賃與版權合作協議4篇
- 專業(yè)貴重物品保管合同書2024版版B版
- 2025年度環(huán)保型鏟車租賃合同范本4篇
- 2025年度廠房買賣合同(含設備安裝及調試)4篇
- 專業(yè)按摩服務人員聘用合同版B版
- 2025年度廠房物業(yè)管理與品牌形象塑造合同4篇
- HG∕T 2058.1-2016 搪玻璃溫度計套
- 九宮數獨200題(附答案全)
- 泌尿科一科一品匯報課件
- 人員密集場所消防安全管理培訓
- 白銅錫電鍍工藝
- 拜耳法氧化鋁生產工藝
- 2024年南京信息職業(yè)技術學院高職單招(英語/數學/語文)筆試歷年參考題庫含答案解析
- 部編版二年級下冊道德與法治第二單元《我們好好玩》全部教案
- 幼兒園利劍護蕾專項行動工作方案總結與展望
- 合同信息管理方案模板范文
- 2024年大唐云南發(fā)電有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論