2023-2024學(xué)年北京市宣武區(qū)重點名校中考四模數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年北京市宣武區(qū)重點名校中考四模數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年北京市宣武區(qū)重點名校中考四模數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年北京市宣武區(qū)重點名校中考四模數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年北京市宣武區(qū)重點名校中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年北京市宣武區(qū)重點名校中考四模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-22.如果代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥33.下列計算正確的是()A.a(chǎn)4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6aD.(2a﹣b)2=4a2﹣b24.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.5.已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;

當(dāng)時,;,其中錯誤的結(jié)論有A.②③ B.②④ C.①③ D.①④6.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m7.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.728.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.9.如圖,是一個工件的三視圖,則此工件的全面積是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm210.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件11.下列計算正確的是A. B. C. D.12.如圖所示,在矩形ABCD中,AB=6,BC=8,對角線AC、BD相交于點O,過點O作OE垂直AC交AD于點E,則DE的長是()A.5 B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.14.如圖,10塊相同的長方形墻磚拼成一個長方形,設(shè)長方形墻磚的長為x厘米,則依題意列方程為_________.15.若式子有意義,則x的取值范圍是______.16.如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.17.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點E,若⊙O的半徑是5,CD=8,則AE=______.18.學(xué)校乒乓球社團(tuán)有4名男隊員和3名女隊員,要從這7名隊員中隨機(jī)抽取一男一女組成一隊混合雙打組合,可組成不同的組合共有_____對.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(1)計算:;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.20.(6分)如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達(dá)式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標(biāo);(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到達(dá)點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.21.(6分)某校為了解學(xué)生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機(jī)抽取一部分學(xué)生進(jìn)行問卷調(diào)查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:(1)共抽取名學(xué)生進(jìn)行問卷調(diào)查;(2)補(bǔ)全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“足球”所對應(yīng)的圓心角的度數(shù);(3)該校共有3000名學(xué)生,請估計全校學(xué)生喜歡足球運動的人數(shù).(4)甲乙兩名學(xué)生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.22.(8分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.23.(8分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設(shè)BD為xcm,CE為ycm.小聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小聰?shù)奶骄窟^程,請補(bǔ)充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補(bǔ)全表格上相關(guān)數(shù)值保留一位小數(shù)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)線段BD是線段CE長的2倍時,BD的長度約為_____cm.24.(10分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等.25.(10分)解方程組:.26.(12分)在平面直角坐標(biāo)系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點,與軸交于點C,過點A作AH⊥軸,垂足為點H,OH=3,tan∠AOH=,點B的坐標(biāo)為(,-2).求該反比例函數(shù)和一次函數(shù)的解析式;求△AHO的周長.27.(12分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標(biāo),若不存在,說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)比較實數(shù)大小的方法進(jìn)行比較即可.根據(jù)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個負(fù)數(shù)絕對值大的反而小即可求解.【詳解】因為正數(shù)大于負(fù)數(shù),兩個負(fù)數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點睛】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負(fù)數(shù)都小于0,兩個負(fù)數(shù)絕對值大的反而?。?、C【解析】

根據(jù)二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關(guān)知識是解題的關(guān)鍵.3、B【解析】分析:根據(jù)合并同類項、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式進(jìn)行計算.詳解:A、a4與a5不是同類項,不能合并,故本選項錯誤;B、(2a2b3)2=4a4b6,故本選項正確;C、-2a(a+3)=-2a2-6a,故本選項錯誤;D、(2a-b)2=4a2-4ab+b2,故本選項錯誤;故選:B.點睛:本題主要考查了合并同類項的法則、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式,熟練掌握運算法則是解題的關(guān)鍵.4、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關(guān)鍵.5、C【解析】

①根據(jù)圖象的開口方向,可得a的范圍,根據(jù)圖象與y軸的交點,可得c的范圍,根據(jù)有理數(shù)的乘法,可得答案;

②根據(jù)自變量為-1時函數(shù)值,可得答案;

③根據(jù)觀察函數(shù)圖象的縱坐標(biāo),可得答案;

④根據(jù)對稱軸,整理可得答案.【詳解】圖象開口向下,得a<0,

圖象與y軸的交點在x軸的上方,得c>0,ac<,故①錯誤;

②由圖象,得x=-1時,y<0,即a-b+c<0,故②正確;

③由圖象,得

圖象與y軸的交點在x軸的上方,即當(dāng)x<0時,y有大于零的部分,故③錯誤;

④由對稱軸,得x=-=1,解得b=-2a,

2a+b=0

故④正確;

故選D.【點睛】考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)a決定拋物線的開口方向和大?。?dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時,對稱軸在y軸左;當(dāng)a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.6、C【解析】分析:結(jié)合2個圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.7、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.8、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質(zhì)得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.9、C【解析】

先根據(jù)三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計算母線長為10,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形半徑等于圓錐的母線長計算圓錐的側(cè)面積和底面積的和即可.【詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長==10,所以此工件的全面積=π62+2π610=96π(cm2).故答案選C.【點睛】本題考查的知識點是圓錐的面積及由三視圖判斷幾何體,解題的關(guān)鍵是熟練的掌握圓錐的面積及由三視圖判斷幾何體.10、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機(jī)事件,屬于不確定事件,故選D.考點:隨機(jī)事件.11、B【解析】試題分析:根據(jù)合并同類項的法則,可知,故A不正確;根據(jù)同底數(shù)冪的除法,知,故B正確;根據(jù)冪的乘方,知,故C不正確;根據(jù)完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關(guān)鍵是靈活應(yīng)用合并同類項法則,同底數(shù)冪的乘除法法則,冪的乘方,乘法公式進(jìn)行計算.12、C【解析】

先利用勾股定理求出AC的長,然后證明△AEO∽△ACD,根據(jù)相似三角形對應(yīng)邊成比例列式求解即可.【詳解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故選:C.【點睛】本題考查了矩形的性質(zhì),勾股定理,相似三角形對應(yīng)邊成比例的性質(zhì),根據(jù)相似三角形對應(yīng)邊成比例列出比例式是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、120°【解析】

設(shè)扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設(shè)扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關(guān)鍵是掌握基本知識.14、x+x=75.【解析】試題解析:設(shè)長方形墻磚的長為x厘米,

可得:x+x=75.15、x>.【解析】解:依題意得:2x+3>1.解得x>.故答案為x>.16、1.【解析】

連接AF,由E是CD的中點、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,則可證△ABF≌△FCE,進(jìn)一步可得到△AFE是等腰直角三角形,則∠AEF=45°.【詳解】解:連接AF,∵E是CD的中點,∴CE=,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,F(xiàn)C=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案為:1.【點睛】本題結(jié)合三角形全等考查了三角函數(shù)的知識.17、2【解析】

連接OC,由垂徑定理知,點E是CD的中點,在直角△OCE中,利用勾股定理即可得到關(guān)于半徑的方程,求得圓半徑即可【詳解】設(shè)AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點睛】此題考查垂徑定理和勾股定理,,解題的關(guān)鍵是利用勾股定理求關(guān)于半徑的方程.18、1【解析】

利用樹狀圖展示所有1種等可能的結(jié)果數(shù).【詳解】解:畫樹狀圖為:

共有1種等可能的結(jié)果數(shù).

故答案為1.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(1)1.【解析】

(1)先計算負(fù)整數(shù)指數(shù)冪、化簡二次根式、代入三角函數(shù)值、計算零指數(shù)冪,再計算乘法和加減運算可得;(1)先根據(jù)整式的混合運算順序和運算法則化簡原式,再利用完全平方公式因式分解,最后將a?b的值整體代入計算可得.【詳解】(1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;(1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,當(dāng)a﹣b=時,原式=()1=1.【點睛】本題主要考查實數(shù)和整式的混合運算,解題的關(guān)鍵是掌握實數(shù)與整式的混合運算順序和運算法則及完全平方公式因式分解的能力.20、(1)二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)點P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當(dāng)點M出發(fā)1秒到達(dá)D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達(dá)式;(2)先求出點B的坐標(biāo),再根據(jù)勾股定理求得BC的長,當(dāng)△PBC為等腰三角形時分三種情況進(jìn)行討論:①CP=CB;②BP=BC;③PB=PC;分別根據(jù)這三種情況求出點P的坐標(biāo);(3)設(shè)AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點P在y軸上,當(dāng)△PBC為等腰三角形時分三種情況進(jìn)行討論:如圖1,①當(dāng)CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當(dāng)PB=PC時,OP=OB=3,∴P3(0,-3);③當(dāng)BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設(shè)AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,當(dāng)點M出發(fā)1秒到達(dá)D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.21、(1)1;(2)詳見解析;(3)750;(4).【解析】

(1)用排球的人數(shù)÷排球所占的百分比,即可求出抽取學(xué)生的人數(shù);(2)足球人數(shù)=學(xué)生總?cè)藬?shù)-籃球的人數(shù)-排球人數(shù)-羽毛球人數(shù)-乒乓球人數(shù),即可補(bǔ)全條形統(tǒng)計圖;(3)計算足球的百分比,根據(jù)樣本估計總體,即可解答;(4)利用概率公式計算即可.【詳解】(1)30÷15%=1(人).答:共抽取1名學(xué)生進(jìn)行問卷調(diào)查;故答案為1.(2)足球的人數(shù)為:1﹣60﹣30﹣24﹣36=50(人),“足球球”所對應(yīng)的圓心角的度數(shù)為360°×0.25=90°.如圖所示:(3)3000×0.25=750(人).答:全校學(xué)生喜歡足球運動的人數(shù)為750人.(4)畫樹狀圖為:(用A、B、C、D、E分別表示籃球、足球、排球、羽毛球、乒乓球的五張卡片)共有25種等可能的結(jié)果數(shù),選同一項目的結(jié)果數(shù)為5,所以甲乙兩人中有且選同一項目的概率P(A)=.【點睛】本題主要考查了條形統(tǒng)計圖,扇形統(tǒng)計圖以及用樣本估計總體的應(yīng)用,解題時注意:從扇形圖上可以清楚地看出各部分?jǐn)?shù)量和總數(shù)量之間的關(guān)系.一般來說,用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.22、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出“至少有一人直行”的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩人之中至少有一人直行的結(jié)果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.23、(1)1.1;(2)見解析;(3).【解析】

(1)(2)需要認(rèn)真按題目要求測量,描點作圖;(3)線段BD是線段CE長的2倍的條件可以轉(zhuǎn)化為一次函數(shù)圖象,通過數(shù)形結(jié)合解決問題.【詳解】根據(jù)題意測量約故應(yīng)填:根據(jù)題意畫圖:當(dāng)線段BD是線段CE長的2倍時,得到圖象,該圖象與中圖象的交點即為所求情況,測量得BD長約.故答案為(1)1.1;(2)見解析;(3)1.7.【點睛】本題考查函數(shù)作圖和函數(shù)圖象實際意義的理解,在中,考查學(xué)生由數(shù)量關(guān)系得到函數(shù)關(guān)系的轉(zhuǎn)化思想.24、見解析.【解析】

根據(jù)角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)即可解決問題.【詳解】∵點P在∠ABC的平分線上,∴點P到∠ABC兩邊的距離相等(角平分線上的點到角的兩邊距離相等),∵點P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點到線段的兩個端點的距離相等),如圖所示:【點睛】本題考查作圖﹣復(fù)雜作圖、角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.25、;;.【解析】分析:把原方程組中的第二個方程通過分解因式降次,轉(zhuǎn)化為兩個一次方程,再分別和第一方程組合成兩個新的方程組,分別解這兩個新的方程組即可求得原方程組的解.詳解:由方程可得,,;則原方程組轉(zhuǎn)化為(Ⅰ)或(Ⅱ),解方程組(Ⅰ)得,解方程組(Ⅱ)得,∴原方程組的解是.點睛:本題考查的是二元二次方程組的解法,解題的要點有兩點:(1)把原方程組中的第2個方程通過分解因式降次轉(zhuǎn)化為兩個二元一次方程,并分別和第1個方程組合成兩個新的方程組;(2)將兩個新的方程組消去y,即可得到關(guān)于x的一元二次方程.26、(1)一次函數(shù)為,反比例函數(shù)為;(2)△AHO的周長為12【解析】分析:(1)根據(jù)正切函數(shù)可得AH=4,根據(jù)反比例函數(shù)的特點k=xy為定值,列出方程,求出k的值,便可求出反比例函數(shù)的解析式;根據(jù)k的值求出B兩點的坐標(biāo),用待定系數(shù)法便可求出一次函數(shù)的解析式.(2)由(1)知AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案.詳解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),代入,得k=-4×3=-12∴反比例函數(shù)為∴∴m=6∴B(6,-2)∴∴=,b=1∴一次函數(shù)為(2)△AHO的周長為:3+4+5=12點睛:此題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論