




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年襄陽市襄城區(qū)重點中學中考試題猜想數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.的值等于()A. B. C. D.2.如果a﹣b=5,那么代數式(﹣2)?的值是()A.﹣ B. C.﹣5 D.53.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.4.“單詞的記憶效率”是指復習一定量的單詞,一周后能正確默寫出的單詞個數與復習的單詞個數的比值.右圖描述了某次單詞復習中四位同學的單詞記憶效率與復習的單詞個數的情況,則這四位同學在這次單詞復習中正確默寫出的單詞個數最多的是()A. B. C. D.5.如圖,⊙O是等邊△ABC的外接圓,其半徑為3,圖中陰影部分的面積是()A.π B. C.2π D.3π6.2017年,小欖鎮(zhèn)GDP總量約31600000000元,數據31600000000科學記數法表示為()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10117.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=18.1903年、英國物理學家盧瑟福通過實驗證實,放射性物質在放出射線后,這種物質的質量將減少,減少的速度開始較快,后來較慢,實際上,放射性物質的質量減為原來的一半所用的時間是一個不變的量,我們把這個時間稱為此種放射性物質的半衰期,如圖是表示鐳的放射規(guī)律的函數圖象,根據圖象可以判斷,鐳的半衰期為()A.810年 B.1620年 C.3240年 D.4860年9.下列計算,正確的是()A.a2?a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+110.在,,0,1這四個數中,最小的數是A. B. C.0 D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將的邊繞著點順時針旋轉得到,邊AC繞著點A逆時針旋轉得到,聯(lián)結.當時,我們稱是的“雙旋三角形”.如果等邊的邊長為a,那么它的“雙旋三角形”的面積是__________(用含a的代數式表示).12.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內的地面寬度為,兩側離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)13.分解因式:a3-a=14.一元二次方程有兩個不相等的實數根,則的取值范圍是________.15.分解因式:4ax2-ay2=________________.16.若關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數根,則m的值為______.三、解答題(共8題,共72分)17.(8分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F,且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.18.(8分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.19.(8分)計算:.20.(8分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.21.(8分)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,﹣1)、(2,1).以0點為位似中心在y軸的左側將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;分別寫出B、C兩點的對應點B′、C′的坐標;如果△OBC內部一點M的坐標為(x,y),寫出M的對應點M′的坐標.22.(10分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標,若不存在請說明理由。23.(12分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區(qū)教育部門隨機調查了若干名中學生,根據調查結果制作統(tǒng)計圖①和圖②,請根據相關信息,解答下列問題:本次接受隨機抽樣調查的中學生人數為_______,圖①中m的值是_____;求本次調查獲取的樣本數據的平均數、眾數和中位數;根據統(tǒng)計數據,估計該地區(qū)250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數.24.某商場以每件30元的價格購進一種商品,試銷中發(fā)現這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數關系m=162﹣3x.請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數關系式.商場每天銷售這種商品的銷售利潤能否達到500元?如果能,求出此時的銷售價格;如果不能,說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:根據特殊角的三角函數值,可知:故選C.2、D【解析】【分析】先對括號內的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.3、B【解析】
在兩個直角三角形中,分別求出AB、AD即可解決問題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點睛】本題考查解直角三角形的應用、銳角三角函數等知識,解題的關鍵是學會利用參數解決問題.4、C【解析】分析:在四位同學中,M同學單詞記憶效率最高,但是復習的單詞最少,T同學復習的單詞最多,但是他的單詞記憶效率最低,N,S兩位同學的單詞記憶效率基本相同,但是S同學復習的單詞最多,這四位同學在這次單詞復習中正確默寫出的單詞個數最多的應該是S.詳解:在四位同學中,M同學單詞記憶效率最高,但是復習的單詞最少,T同學復習的單詞最多,但是他的單詞記憶效率最低,N,S兩位同學的單詞記憶效率基本相同,但是S同學復習的單詞最多,這四位同學在這次單詞復習中正確默寫出的單詞個數最多的應該是S.故選C.點睛:考查函數的圖象,正確理解題目的意思是解題的關鍵.5、D【解析】
根據等邊三角形的性質得到∠A=60°,再利用圓周角定理得到∠BOC=120°,然后根據扇形的面積公式計算圖中陰影部分的面積即可.【詳解】∵△ABC為等邊三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴圖中陰影部分的面積==3π.故選D.【點睛】本題考查了三角形的外接圓與外心、圓周角定理及扇形的面積公式,求得∠BOC=120°是解決問題的關鍵.6、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】31600000000=3.16×1.故選:C.【點睛】本題考查科學記數法,解題的關鍵是掌握科學記數法的表示.7、D【解析】
先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗8、B【解析】
根據半衰期的定義,函數圖象的橫坐標,可得答案.【詳解】由橫坐標看出1620年時,鐳質量減為原來的一半,故鐳的半衰期為1620年,故選B.【點睛】本題考查了函數圖象,利用函數圖象的意義及放射性物質的半衰期是解題關鍵.9、C【解析】
解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【點睛】本題考查合并同類項,同底數冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關鍵.10、A【解析】【分析】根據正數大于零,零大于負數,正數大于一切負數,即可得答案.【詳解】由正數大于零,零大于負數,得,最小的數是,故選A.【點睛】本題考查了有理數比較大小,利用好“正數大于零,零大于負數,兩個負數絕對值大的反而小”是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】
首先根據等邊三角形、“雙旋三角形”的定義得出△AB'C'是頂角為150°的等腰三角形,其中AB'=AC'=a.過C'作C'D⊥AB'于D,根據30°角所對的直角邊等于斜邊的一半得出C'DAC'a,然后根據S△AB'C'AB'?C'D即可求解.【詳解】∵等邊△ABC的邊長為a,∴AB=AC=a,∠BAC=60°.∵將△ABC的邊AB繞著點A順時針旋轉α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.∵邊AC繞著點A逆時針旋轉β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如圖,過C'作C'D⊥AB'于D,則∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'?C'Da?aa1.故答案為:a1.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了含30°角的直角三角形的性質,等邊三角形的性質以及三角形的面積.12、9.1【解析】
建立直角坐標系,得到二次函數,門洞高度即為二次函數的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數的簡單應用,能夠建立直角坐標系解出二次函數解析式是本題關鍵13、【解析】a3-a=a(a2-1)=14、且【解析】
根據一元二次方程的根與判別式△的關系,結合一元二次方程的定義解答即可.【詳解】由題意可得,1?k≠0,△=4+4(1?k)>0,∴k<2且k≠1.故答案為k<2且k≠1.【點睛】本題主要考查了一元二次方程的根的判別式的應用,解題中要注意不要漏掉對二次項系數1-k≠0的考慮.15、a(2x+y)(2x-y)【解析】
首先提取公因式a,再利用平方差進行分解即可.【詳解】原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案為a(2x+y)(2x-y).【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.16、-1【解析】
根據關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數根;②當△=0時,方程有兩個相等的兩個實數根;③當△<0時,方程無實數根.三、解答題(共8題,共72分)17、(1)見解析(2)【解析】
(1)連接OE,BE,因為DE=EF,所以=,從而易證∠OEB=∠DBE,所以OE∥BC,從可證明BC⊥AC;(2)設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴【點睛】本題考查圓的綜合問題,涉及平行線的判定與性質,銳角三角函數,解方程等知識,綜合程度較高,需要學生靈活運用所學知識.18、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】
(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關于x軸的對稱點為點M1(1,-2);②點M(1,2)關于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點睛】本題考查了一次函數圖象與幾何變換,一次函數圖象上點的坐標特征,一次函數的性質,解一元一次不等式組,都是基礎知識,需熟練掌握.19、.【解析】
利用特殊角的三角函數值以及負指數冪的性質和絕對值的性質化簡即可得出答案.【詳解】解:原式==.故答案為.【點睛】本題考查實數運算,特殊角的三角函數值,負整數指數冪,正確化簡各數是解題關鍵.20、(1);(2).【解析】
(1)一共4個小球,則任取一個球,共有4種不同結果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據一共出現的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據表格可得:共有12中等可能的結果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率與不等式的性質.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.21、(1)畫圖見解析(2)B'(-6,2)、C'(-4,-2)(3)M'(-2x,-2y)【解析】
解:(1)(2)以0點為位似中心在y軸的左側將△OBC放大到兩倍,則是對應點的坐標放大兩倍,并將符號進行相應的改變,因為B(3,-1),則B’(-6,2)C(2,1),則C‘(-4,-2)(3)因為點M(x,y)在△OBC內部,則它的對應點M′的坐標是M的坐標乘以2,并改變符號,即M’(-2x,-2y)22、(1);(2)(3,-4)或(5,4)或(-5,4)【解析】
(1)設|OA|=1,確定A,B,C三點坐標,然后用待定系數法即可完成;(2)先畫出存在的點,然后通過平移和計算確定坐標;【詳解】解:(1)設|OA|=1,則A(-1,0),B(4,0)C(0,4)設拋物線的解析式為y=ax2+bx+c則有:解得所以函數解析式為:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如圖:P1相當于C點向右平移了5個單位長度,則坐標為(5,4);P2相當于C點向左平移了5個單位長度,則坐標為(-5,4);設P3坐標為(m,n)在第四象限,要使AP3BC是平行四邊形,則有AP3=BC,BP3=AC∴即(舍去)P3坐標為(3,-4)【點睛】本題主要考查了二次函數綜合題,此題涉及到待定系數法求二次函數解析式,通過作圖確認平行四邊形存在,然后通過觀察和計算確定P點坐標;解題的關鍵在于規(guī)范作圖,以便于樹形結合.23、(1)250、12;(2)平均數:1.38h;眾數:1.5h;中位數:1.5h;(3)160000人;【解析】
(1)根據題意,本次接受調查的學生總人數為各個金額人數之和,用總概率減去其他金額的概率即可求得m值.(2)平均數為一組數據中所有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 交互式產品設計技術探討
- 人工智能實驗室技術選型策略
- 企業(yè)宣傳材料制作技巧與規(guī)范
- 主題酒店的多元化經營模式探索
- 小學一年級心理素質培養(yǎng)教學計劃
- 中華陶瓷文化及其制作工藝
- 企業(yè)技術創(chuàng)新團隊的組建與培養(yǎng)
- 三年級信息科技第28課《初識人工智能》教學設計、學習任務單及課后習題
- 教育行業(yè)市場調研與發(fā)展計劃
- 2025新蘇教版三年級科學信息技術應用計劃
- 2024年中考英語熱點閱讀練習9 中秋節(jié)(含解析)
- CT設備維保服務售后服務方案
- 初中信息技術教學中的項目式學習
- 雕塑采購投標方案(技術標)
- GB/T 43241-2023法庭科學一氧化二氮檢驗氣相色譜-質譜法
- 永安道路貨物運輸承運人責任保險(2020版)條款
- 心理學專業(yè)英語基礎課件
- 尤塞恩博爾特
- 電子技術基礎與技能(中職)PPT全套教學課件
- 2022年高考真題及答案解析《歷史、地理、政治》(湖北卷)
- 集團項目施工管理標準化指導手冊
評論
0/150
提交評論