


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一種基于SVD的交通流量數據補全算法Title:ASVD-basedTrafficFlowDataCompletionAlgorithmAbstract:Trafficflowdataplaysacrucialroleinmaintainingtransportationnetworkefficiencyandensuringthesmoothflowofvehicles.However,duetovariousreasonssuchassensorfailuresandlimitedsensorcoverage,trafficflowdatacanoftenbeincompleteormissing.ThispaperpresentsaSingularValueDecomposition(SVD)-basedalgorithmfortrafficflowdatacompletion.Theproposedalgorithmutilizesthecorrelationandpatternswithinthetrafficflowdatatoestimatemissingvaluesaccurately.Experimentalresultsdemonstratetheeffectivenessandefficiencyoftheproposedalgorithmincompletingtrafficflowdata.1.Introduction:Trafficcongestionhasbecomeaprevalentissueinurbanareas,leadingtodelays,increasedfuelconsumption,andenvironmentalpollution.Accurateandreliabletrafficflowdataiscrucialfortransportationmanagementsystemstoaddresstheseproblems.However,collectingreal-timetrafficflowdatafromvarioussensorsisacomplexandcostlytask.Thus,theavailabilityofcompleteandaccuratetrafficflowdataisfrequentlycompromised.Incompleteormissingtrafficflowdatahamperstheefficiencyoftrafficmanagementsystemsanddecision-makingprocesses.2.RelatedWork:Varioustechniqueshavebeendevelopedtoaddresstheproblemofmissingtrafficflowdata.Thesetechniquescanbebroadlycategorizedintoclassicalstatisticalmethods,machinelearning-basedapproaches,andmatrixcompletionmethods.However,thesemethodsoftensufferfromlimitationssuchasassuminglinearity,ignoringthenon-linearcharacteristicsoftrafficflow,ordependenceonlarge-scaletrainingdata.Inthispaper,weproposeanSVD-basedtrafficflowdatacompletionalgorithmtoovercometheselimitations.3.SingularValueDecomposition(SVD):SVDisawidelyusedmatrixfactorizationtechniquethatdecomposesamatrixintothreecomponentmatrices:U,Σ,andV^T.UandVareorthogonalmatrices,whileΣisadiagonalmatrix.SVDallowsfortheidentificationoflow-rankstructuresinamatrix.Inthecontextoftrafficflowdatacompletion,SVDcancapturetheunderlyingcorrelationandpatternswithinthedata.4.ProposedAlgorithm:4.1DataPreprocessing:BeforeapplyingSVD,thetrafficflowdataispreprocessedtohandlemissingvaluesandoutliers.Missingvaluesareassumedtobemaskedaszerosandwillbetreatedasunknownsduringthecompletionprocess.Outliersaredetectedandeliminatedusingstatisticaltechniques.4.2DataCompletionusingSVD:ThetrafficflowdatamatrixisdecomposedusingSVD,resultinginU,Σ,andV^T.TherankofthematrixisdeterminedbyanalyzingtheeigenvaluesinΣ.Thehighertheeigenvalues,themoreimportantthecorrespondingfeatures.Weretainthetopkeigenvaluestoapproximatetheoriginaldatamatrix.4.3Low-rankApproximation:Low-rankapproximationisperformedbysettingtheremainingeigenvaluesinΣtozero.ThereducedU,Σ,andV^Tmatricesarethenmultipliedtoreconstructthecompletedtrafficflowdatamatrix.4.4DataRefinement:Tofurtherimprovetheaccuracyofthecompletedtrafficflowdata,arefinementstepisperformed.Thisstepleveragesthetemporalandspatialcharacteristicsofthedatatocorrectanydiscrepanciesbetweenadjacenttimeintervalsorsensorlocations.Techniquessuchasinterpolationorregressionanalysiscanbeemployed.5.ExperimentalEvaluation:Theproposedalgorithmisevaluatedusingreal-worldtrafficflowdatasetsfromamajorcity.Theperformanceofthealgorithmiscomparedwithexistingmethods.Evaluationcriteriaincludetherootmeansquareerror(RMSE),meanabsoluteerror(MAE),andcomputationtime.6.ResultsandDiscussion:ExperimentalresultsdemonstratethattheproposedSVD-basedalgorithmoutperformsexistingmethodsintermsofcompletionaccuracyandcomputationefficiency.Thealgorithmeffectivelycapturestheunderlyingpatternsinthetrafficflowdata,resultinginaccuratecompletionofmissingvalues.Thedatarefinementstepfurtherenhancesthecompleteddataquality.7.Conclusion:ThispaperpresentsanovelSVD-basedalgorithmforcompletingtrafficflowdata.Byleveragingthecorrelationandpatternswithinthedata,theproposedalgorithmaccuratelyestimatesmissingvaluesintrafficflowdatasets.Experimentalresultsdemonstratetheeffectivenessandefficiencyofthealgorithminhandlingmissingtrafficflowdata.Futureresearchdirectionsmayincludeinvestigatingthealgorithm'sperformanceonlarger-scaledatasetsandintegratingothermachinelearningtechniquestofurtherenhancecompletionaccuracy.Acknowledgments:Theauthorsacknowledgethesupportandresourcesprovidedby[organizationname].References:[Listofrelevantreferences]Note:Th
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文藝演出場地租賃免責協(xié)議
- 建筑工程大包合同
- 場站防爆燈安裝施工合同(3篇)
- 家裝工程設計及施工承包合同
- 電子商務產業(yè)園合作協(xié)議
- 電能行業(yè)智能電網建設與管理方案
- 居間買賣協(xié)議合同
- 物業(yè)收費管理合同
- 環(huán)境監(jiān)測評估咨詢服務合同
- 房子抵押還款協(xié)議書
- 懷念戰(zhàn)友混聲四部合唱簡譜
- 城市軌道交通通信信號系統(tǒng)-綜合練習題含答案
- 安全生產投訴與舉報處理培訓
- 2024年湖南鐵道職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析word版
- 新《安全生產法》全面解讀“三管三必須”
- 印刷包裝行業(yè)復工安全培訓課件
- 蜜蜂的社會結構和功能
- 電氣八大管理制度
- 財政投資評審項目造價咨詢服務方案審計技術方案
- 中國電信應急管理整體解決方案
- 公務員年度考核登記表(電子版)
評論
0/150
提交評論