一種Hamilton正則方程的推導(dǎo)方法_第1頁(yè)
一種Hamilton正則方程的推導(dǎo)方法_第2頁(yè)
一種Hamilton正則方程的推導(dǎo)方法_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一種Hamilton正則方程的推導(dǎo)方法Title:DerivationofHamilton'sCanonicalEquationsIntroduction:Hamilton'scanonicalequationsareafundamentalaspectofclassicalmechanicsthatdescribethetimeevolutionofasystem'sdynamicalvariables.TheyarederivedfromHamilton'sprinciple,whichstatesthattheactionintegralalongatrajectoryisstationary.Inthispaper,wewillderivethecanonicalequationsusingtheLagrangianformalismandtheprincipleofstationaryaction.Derivation:Step1:LagrangianFormulationWebeginbyconsideringasystemwithgeneralizedcoordinatesq_iandtheircorrespondinggeneralizedvelocities?_i.TheLagrangianofthesystem,denotedbyL,isdefinedasthekineticenergyTminusthepotentialenergyV:L=T-V=?∑_(i=1)^nm_i?_i^2-V(q_1,q_2,...,q_n),wherem_iisthemassassociatedwitheachgeneralizedcoordinateq_i.Step2:PrincipleofStationaryActionAccordingtoHamilton'sprinciple,theactionSalongatrajectoryshouldbestationary,whichcanbeexpressedas:δS=∫[L(q_1,q_2,...,q_n,{?_i})-λ(t)(∑_i?_idq_i-H)]dt=0,whereHistheHamiltonian,λ(t)isaLagrangemultiplier,and∑_i?_idq_irepresentsthevariationofthegeneralizedcoordinates.Step3:VariationoftheActionIntegralToderivethecanonicalequations,weneedtovarytheactionintegralbyconsideringthevariationsofboththegeneralizedcoordinatesδq_iandthevelocitiesδ?_iwhilekeepingtheendpointsfixed.Usingthevariationalcalculus,weobtain:δS=∫[?L/?q_iδq_i+?L/??_iδ?_i-λ(t)(∑_kδ?_kdq_k+∑_j?_jδ(q_j))]dt,where?L/?q_irepresentsthepartialderivativeofLwithrespecttoq_iand?L/??_irepresentsthepartialderivativeofLwithrespectto?_i.Step4:IntegrationbyPartsTosimplifytheexpression,weapplyintegrationbypartstothesecondterm:δS=∫[?L/?q_iδq_i+(d/dt)(?L/??_i)δq_i-λ(t)(∑_kδ?_kdq_k+∑_j?_jδ(q_j))]dt-?L/??_iδq_i|_[t_1,t_2],where|_[t_1,t_2]denotesevaluationattheendpointsofthetrajectory.Step5:Euler-LagrangeEquationsApplyingtheprincipleofstationaryaction,werequireδS=0.Thus,theintegrandmustvanish,leadingtotheEuler-Lagrangeequations:?L/?q_i-(d/dt)(?L/??_i)=λ(t)?_i,fori=1ton.Theseequationsrepresentasetofnsecond-orderdifferentialequations,whichdescribethedynamicsofthesystem.Step6:IntroductionoftheHamiltonianToproceedtoHamilton'scanonicalequations,weintroducetheHamiltonianHdefinedas:H=∑_i?_i?L/??_i-L.Bysubstituting?L/??_iwithp_i,knownasgeneralizedmomenta,weobtain:H=∑_i?_ip_i-L.Step7:CanonicalEquationsTakingthetimederivativeofp_iandq_i,wefind:d/dt(p_i)=?H/?q_i,d/dt(q_i)=-?H/?p_i.TheseequationsareknownasHamilton'scanonicalequations,whichdescribetheHamiltoniandynamicsofthesystem.TheyprovideanalternativeformulationtoNewton'slawsofmotionandexhibitthesymplecticstructureofclassicalmechanics.Conclusion:Inthispaper,wehavederivedHamilton'scanonicalequationsstartingfromHamilton'sprincipleofstationaryaction.ByconsideringtheLagrangianformulationandapplyingthevariationalcalculus,weobtainedtheEuler-Lagrangeequations.ByintroducingtheHamiltonianandtakingitspartialderivatives,weobtainedHamilton'scanonicalequations,whichgovernthedynamicsof

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論