廣東省湛江一中等“四校”重點(diǎn)中學(xué)2024年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
廣東省湛江一中等“四校”重點(diǎn)中學(xué)2024年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
廣東省湛江一中等“四校”重點(diǎn)中學(xué)2024年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
廣東省湛江一中等“四校”重點(diǎn)中學(xué)2024年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
廣東省湛江一中等“四校”重點(diǎn)中學(xué)2024年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省湛江一中等“四?!敝攸c(diǎn)中學(xué)2024年高三3月份第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是虛數(shù)單位,則()A. B. C. D.2.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為,分別為拋物線與圓上的動點(diǎn),則的最小值為()A. B. C. D.3.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.4.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.5.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實(shí)數(shù)λ的最大值為()A. B. C. D.6.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.8.已知集合,,則集合子集的個數(shù)為()A. B. C. D.9.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.10.已知是第二象限的角,,則()A. B. C. D.11.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③12.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則關(guān)于的不等式的解集為_______.14.已知向量,,若,則______.15.已知函數(shù)的圖象在處的切線斜率為,則______.16.已知集合,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點(diǎn)到平面的距離.18.(12分)已知函數(shù),,且.(1)當(dāng)時,求函數(shù)的減區(qū)間;(2)求證:方程有兩個不相等的實(shí)數(shù)根;(3)若方程的兩個實(shí)數(shù)根是,試比較,與的大小,并說明理由.19.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點(diǎn)個數(shù).20.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點(diǎn),求中線的長.21.(12分)中的內(nèi)角,,的對邊分別是,,,若,.(1)求;(2)若,點(diǎn)為邊上一點(diǎn),且,求的面積.22.(10分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且是與的等差中項(xiàng).(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最小正整數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則,直接計(jì)算,即可得出結(jié)果.【詳解】.故選B【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法,熟記運(yùn)算法則即可,屬于基礎(chǔ)題型.2、D【解析】

利用拋物線的定義,求得p的值,由利用兩點(diǎn)間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點(diǎn)在軸上,準(zhǔn)線方程,則點(diǎn)到焦點(diǎn)的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時,取得最小值,最小值為,故選D.【點(diǎn)睛】該題考查的是有關(guān)距離的最小值問題,涉及到的知識點(diǎn)有拋物線的定義,點(diǎn)到圓上的點(diǎn)的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.3、B【解析】

首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時,最小值為,故選B.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.4、C【解析】

令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點(diǎn)睛】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.5、D【解析】

利用等差數(shù)列通項(xiàng)公式推導(dǎo)出λ,由d∈[1,2],能求出實(shí)數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時,實(shí)數(shù)λ取最大值為λ.故選D.【點(diǎn)睛】本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.6、B【解析】命題p:,為,又為真命題的充分不必要條件為,故7、C【解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當(dāng)時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.8、B【解析】

首先求出,再根據(jù)含有個元素的集合有個子集,計(jì)算可得.【詳解】解:,,,子集的個數(shù)為.故選:.【點(diǎn)睛】考查列舉法、描述法的定義,以及交集的運(yùn)算,集合子集個數(shù)的計(jì)算公式,屬于基礎(chǔ)題.9、B【解析】

構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問題解決問題的能力,是難題.10、D【解析】

利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;屬于中檔題.11、A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項(xiàng).點(diǎn)睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.12、D【解析】

可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時的導(dǎo)數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運(yùn)用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題.14、1【解析】

根據(jù)向量加法和減法的坐標(biāo)運(yùn)算,先分別求得與,再結(jié)合向量的模長公式即可求得的值.【詳解】向量,則,則因?yàn)榧?化簡可得解得故答案為:【點(diǎn)睛】本題考查了向量坐標(biāo)加法和減法的運(yùn)算,向量模長的求法,屬于基礎(chǔ)題.15、【解析】

先對函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線上在某點(diǎn)切線方程的斜率求參數(shù)的問題,屬于基礎(chǔ)題.16、【解析】

解一元二次不等式化簡集合,再進(jìn)行集合的交運(yùn)算,即可得到答案.【詳解】,,.故答案為:.【點(diǎn)睛】本題考查一元二次不等式的求解、集合的交運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點(diǎn)到平面的距離;解法二:由條件知點(diǎn)到平面的距離等于點(diǎn)到平面的距離,過點(diǎn)作的垂線,垂足,證明平面,計(jì)算出即可.【詳解】解法一:(1)依題意知,因?yàn)?,所?又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點(diǎn),所以.因?yàn)?,所?又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設(shè)點(diǎn)到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因?yàn)?,平面,平面,所以平?所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離.過點(diǎn)作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點(diǎn)到平面的距離.由(1)知,,在中,,,得.又,所以.所以點(diǎn)到平面的距離為.【點(diǎn)睛】本題主要考查空間面面垂直的的判定及點(diǎn)到面的距離,考查學(xué)生的空間想象能力、推理論證能力、運(yùn)算求解能力.求點(diǎn)到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點(diǎn)到平面的垂線段,進(jìn)行計(jì)算即可.18、(1)(2)詳見解析(3)【解析】

試題分析:(1)當(dāng)時,,由得減區(qū)間;(2)因?yàn)?,所以,因?yàn)樗?,方程有兩個不相等的實(shí)數(shù)根;(3)因?yàn)?,,所以試題解析:(1)當(dāng)時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實(shí)數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個不相等的實(shí)數(shù)根;(3)因?yàn)椋?,又在和增,在減,所以.考點(diǎn):利用導(dǎo)數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關(guān)系19、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)函數(shù)在有3個零點(diǎn).【解析】

(Ⅰ)求出導(dǎo)數(shù),寫出切線方程;(Ⅱ)二次求導(dǎo),判斷單調(diào)遞減,結(jié)合零點(diǎn)存在性定理,判斷即可;(Ⅲ),數(shù)形結(jié)合得出結(jié)論.【詳解】解:(Ⅰ),,,故在點(diǎn),處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點(diǎn)存在性定理,存在唯一一個零點(diǎn),,當(dāng)時,遞增;當(dāng)時,遞減,故在只有唯一的一個極大值;(Ⅲ)函數(shù)在有3個零點(diǎn).【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,考查零點(diǎn)存在性定理的應(yīng)用,關(guān)鍵是能夠通過導(dǎo)函數(shù)的單調(diào)性和零點(diǎn)存在定理確定導(dǎo)函數(shù)的零點(diǎn)個數(shù),進(jìn)而確定函數(shù)的單調(diào)性,屬于難題.20、(1);(2)【解析】

(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理在解三角形中的應(yīng)用,考查三角函數(shù)知識的運(yùn)用,屬于中檔題.21、(1)(2)10【解析】

(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計(jì)算即可;(2)由已知可得,利用余弦定理解出,由已知計(jì)算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡得,,解得或(負(fù)值舍去),,,,,,的面積.【點(diǎn)睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應(yīng)用,考查了二倍角公式的應(yīng)用,考查了運(yùn)算能力,屬于基礎(chǔ)題.22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論