2023-2024學(xué)年山東省濟(jì)南二中高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
2023-2024學(xué)年山東省濟(jì)南二中高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
2023-2024學(xué)年山東省濟(jì)南二中高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
2023-2024學(xué)年山東省濟(jì)南二中高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
2023-2024學(xué)年山東省濟(jì)南二中高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年山東省濟(jì)南二中高三第四次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.運(yùn)行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.2.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.3.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.164.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.15605.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.86.《易·系辭上》有“河出圖,洛出書”之說(shuō),河圖、洛書是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.7.設(shè)i是虛數(shù)單位,若復(fù)數(shù)是純虛數(shù),則a的值為()A. B.3 C.1 D.8.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.9.若兩個(gè)非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.10.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.111.已知的展開(kāi)式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.312.對(duì)于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計(jì)表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.4二、填空題:本題共4小題,每小題5分,共20分。13.某中學(xué)舉行了一次消防知識(shí)競(jìng)賽,將參賽學(xué)生的成績(jī)進(jìn)行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績(jī)?cè)趨^(qū)間的學(xué)生人數(shù)是__________.14.已知數(shù)列滿足:點(diǎn)在直線上,若使、、構(gòu)成等比數(shù)列,則______15.函數(shù)在上的最小值和最大值分別是_____________.16.割圓術(shù)是估算圓周率的科學(xué)方法,由三國(guó)時(shí)期數(shù)學(xué)家劉徽創(chuàng)立,他用圓內(nèi)接正多邊形面積無(wú)限逼近圓面積,從而得出圓周率.現(xiàn)在半徑為1的圓內(nèi)任取一點(diǎn),則該點(diǎn)取自其內(nèi)接正十二邊形內(nèi)部的概率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個(gè)零點(diǎn),且;(2)若當(dāng)時(shí),不等式恒成立,求證:.18.(12分)已知函數(shù)(1)若,求證:(2)若,恒有,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)函數(shù),若對(duì)于,使得成立,求的取值范圍.20.(12分)某大學(xué)開(kāi)學(xué)期間,該大學(xué)附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒(méi)有提成,從第55單開(kāi)始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請(qǐng)你為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)21.(12分)已知在中,角、、的對(duì)邊分別為,,,,.(1)若,求的值;(2)若,求的面積.22.(10分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運(yùn)行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時(shí)要輸出的值為99.此時(shí).故選:C.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.2、D【解析】

由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.3、C【解析】

根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點(diǎn)睛】本題主要考查了解三角形中正余弦定理與面積公式的運(yùn)用,屬于中檔題.4、B【解析】

根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.5、D【解析】

畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒(méi)有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D【點(diǎn)睛】本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.6、C【解析】

先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類問(wèn)題可通過(guò)古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.7、D【解析】

整理復(fù)數(shù)為的形式,由復(fù)數(shù)為純虛數(shù)可知實(shí)部為0,虛部不為0,即可求解.【詳解】由題,,因?yàn)榧兲摂?shù),所以,則,故選:D【點(diǎn)睛】本題考查已知復(fù)數(shù)的類型求參數(shù)范圍,考查復(fù)數(shù)的除法運(yùn)算.8、B【解析】

由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對(duì)值不等式求得結(jié)果.【詳解】由題意知:定義域?yàn)椋?,為偶函?shù),當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問(wèn)題;奇偶性的作用是能夠確定對(duì)稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡(jiǎn)不等式.9、A【解析】

設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.10、B【解析】

,選B.11、A【解析】

先求的展開(kāi)式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開(kāi)式的常數(shù)項(xiàng),從而求出的值.【詳解】展開(kāi)式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開(kāi)式中的系數(shù)問(wèn)題,其中對(duì)所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.12、C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點(diǎn)睛】本題考查中位數(shù)的計(jì)算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、30【解析】

根據(jù)頻率直方圖中數(shù)據(jù)先計(jì)算樣本容量,再計(jì)算成績(jī)?cè)?0~100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績(jī)?cè)?0~100分的頻率是,則成績(jī)?cè)趨^(qū)間的學(xué)生人數(shù)是.故答案為:30【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生綜合分析,數(shù)據(jù)處理,數(shù)形運(yùn)算的能力,屬于基礎(chǔ)題.14、13【解析】

根據(jù)點(diǎn)在直線上可求得,由等比中項(xiàng)的定義可構(gòu)造方程求得結(jié)果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.【點(diǎn)睛】本題考查根據(jù)三項(xiàng)成等比數(shù)列求解參數(shù)值的問(wèn)題,涉及到等比中項(xiàng)的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題16、【解析】

求出圓內(nèi)接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據(jù)幾何概型公式,該點(diǎn)取自其內(nèi)接正十二邊形的概率為,故答案為:.【點(diǎn)睛】本小題主要考查面積型幾何概型的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【解析】

(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號(hào),即可證明結(jié)論;(2)當(dāng)時(shí),不等式恒成立,分離參數(shù)只需時(shí),恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導(dǎo)數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因?yàn)椋?,所以在區(qū)間上有且僅有一個(gè)零點(diǎn),且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當(dāng)時(shí),;當(dāng)時(shí),恒成立,設(shè)(),所以.由(1)可知,,使,所以,當(dāng)時(shí),,當(dāng)時(shí),,由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因?yàn)?,所以,從而,所?令,,則,所以在區(qū)間上是增函數(shù),所以,故.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點(diǎn)、極值最值、不等式的證明,分離參數(shù)是解題的關(guān)鍵,意在考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.18、(1)見(jiàn)解析;(2)(﹣∞,0]【解析】

(1)利用導(dǎo)數(shù)求x<0時(shí),f(x)的極大值為,即證(2)等價(jià)于k≤,x>0,令g(x)=,x>0,再求函數(shù)g(x)的最小值得解.【詳解】(1)∵函數(shù)f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)內(nèi)遞增,在(﹣,0)內(nèi)遞減,在(0,+∞)內(nèi)遞增,∴f(x)的極大值為,∴當(dāng)x<0時(shí),f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,則g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,則h(x)在(0,+∞)上單調(diào)遞增,且x→0+時(shí),h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴當(dāng)x∈(0,x0)時(shí),g′(x)<0,g(x)單調(diào)遞減,當(dāng)x∈(x0,+∞)時(shí),g′(x)>0,g(x)單調(diào)遞增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(yuǎn)(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴實(shí)數(shù)k的取值范圍是(﹣∞,0].【點(diǎn)睛】本題主要考查利用證明不等式,考查利用導(dǎo)數(shù)求最值和解答不等式的恒成立問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.19、(1)當(dāng)時(shí),在上增;當(dāng)時(shí),在上減,在上增(2)【解析】

(1)求出導(dǎo)函數(shù),分類討論確定的正負(fù),確定單調(diào)區(qū)間;(2)題意說(shuō)明,利用導(dǎo)數(shù)求出的最小值,由(1)可得的最小值,從而得出結(jié)論.【詳解】解:(1)定義域?yàn)楫?dāng)時(shí),即在上增;當(dāng)時(shí),即得得綜上所述,當(dāng)時(shí),在上增;當(dāng)時(shí),在上減,在上增(2)由題在上增由(1)當(dāng)時(shí),在上增,所以此時(shí)無(wú)最小值;當(dāng)時(shí),在上減,在上增,即,解得綜上【點(diǎn)睛】本題考查用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查不等式恒成立問(wèn)題,解題關(guān)鍵是掌握轉(zhuǎn)化與化歸思想,本題恒成立問(wèn)題轉(zhuǎn)化為,求出兩函數(shù)的最小值后可得結(jié)論.20、(1)0.4;(2);(3)應(yīng)選擇方案,理由見(jiàn)解析【解析】

(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對(duì)立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【詳解】(1)設(shè)事件為“隨機(jī)選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計(jì)為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,方案的日工資,方案的日工資,所以隨機(jī)變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機(jī)變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應(yīng)選擇方案.【點(diǎn)睛】本題考查了頻率分布直方圖的簡(jiǎn)單應(yīng)用,獨(dú)立重復(fù)試驗(yàn)概率的求法,數(shù)學(xué)期望的求法并由期望作出方案選擇,屬于中檔題.21、(1)7(2)14【解析】

(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理解三角形,解題關(guān)鍵是掌握正弦定理邊化角,考查了

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論