版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河北省滄州市肅寧一中2024屆高考數(shù)學(xué)三模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列的前n項(xiàng)和為,,且對于任意,滿足,則()A. B. C. D.2.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.3.中心在原點(diǎn),對稱軸為坐標(biāo)軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或4.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個(gè)內(nèi)角,則的大小關(guān)系是()A. B.C. D.以上情況均有可能5.給出下列四個(gè)命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個(gè)數(shù)是()A. B. C. D.6.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.27.二項(xiàng)式的展開式中,常數(shù)項(xiàng)為()A. B.80 C. D.1608.拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),,則()A. B. C. D.9.向量,,且,則()A. B. C. D.10.設(shè)全集,集合,則=()A. B. C. D.11.設(shè)集合,,若集合中有且僅有2個(gè)元素,則實(shí)數(shù)的取值范圍為A. B.C. D.12.已知是雙曲線的左、右焦點(diǎn),是的左、右頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.學(xué)校藝術(shù)節(jié)對同一類的四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:甲說:“作品獲得一等獎(jiǎng)”;乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說:“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是___.14.已知雙曲線()的左右焦點(diǎn)分別為,為坐標(biāo)原點(diǎn),點(diǎn)為雙曲線右支上一點(diǎn),若,,則雙曲線的離心率的取值范圍為_____.15.在的展開式中,各項(xiàng)系數(shù)之和為,則展開式中的常數(shù)項(xiàng)為__________________.16.如圖,兩個(gè)同心圓的半徑分別為和,為大圓的一條直徑,過點(diǎn)作小圓的切線交大圓于另一點(diǎn),切點(diǎn)為,點(diǎn)為劣弧上的任一點(diǎn)(不包括兩點(diǎn)),則的最大值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),如果方程有兩個(gè)不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.19.(12分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),,滿足,求的最小值.20.(12分)設(shè)函數(shù).(1)若,求實(shí)數(shù)的取值范圍;(2)證明:,恒成立.21.(12分)在平面直角坐標(biāo)系中,點(diǎn)是直線上的動(dòng)點(diǎn),為定點(diǎn),點(diǎn)為的中點(diǎn),動(dòng)點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線交曲線于,兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線于,兩點(diǎn).問是否為定值?若是,求的值;若不是,請說明理由.22.(10分)已知橢圓的左,右焦點(diǎn)分別為,,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.(1)求橢圓E的標(biāo)準(zhǔn)方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.2、C【解析】
先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎(jiǎng)的概率,由對立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:
①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線的離心率2或.
故選:A.【點(diǎn)睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.4、B【解析】
由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較.【詳解】由可得,即函數(shù)的周期,因?yàn)樵趨^(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調(diào)遞增,因?yàn)?,是銳角三角形的兩個(gè)內(nèi)角,所以且即,所以即,.故選:.【點(diǎn)睛】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.5、B【解析】
①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個(gè)是假命題,故①錯(cuò)誤;當(dāng)內(nèi)角為時(shí),不是象限角,故②錯(cuò)誤;由特稱命題的否定是全稱命題知③正確;因?yàn)?,所以,所以“”是“”的必要條件,故④正確.故選:B.【點(diǎn)睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識(shí),是一道基礎(chǔ)題.6、B【解析】
根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.7、A【解析】
求出二項(xiàng)式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開式的通式,是基礎(chǔ)題.8、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因?yàn)?,所?故選B【點(diǎn)睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.9、D【解析】
根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.10、A【解析】
先求得全集包含的元素,由此求得集合的補(bǔ)集.【詳解】由解得,故,所以,故選A.【點(diǎn)睛】本小題主要考查補(bǔ)集的概念及運(yùn)算,考查一元二次不等式的解法,屬于基礎(chǔ)題.11、B【解析】
由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點(diǎn)睛】本題主要考查了集合的關(guān)系及運(yùn)算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.12、D【解析】
根據(jù)為等腰三角形,可求出點(diǎn)P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因?yàn)闉榈妊切?,,所以?,又,,解得,所以雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、C【解析】
假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說對的人數(shù).【詳解】分別獲獎(jiǎng)的說對人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對錯(cuò)丙對錯(cuò)對錯(cuò)丁對錯(cuò)錯(cuò)對說對人數(shù)3021故獲得一等獎(jiǎng)的作品是C.【點(diǎn)睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.14、【解析】
法一:根據(jù)直角三角形的性質(zhì)和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關(guān)于的式子,再令,則,令對函數(shù)求導(dǎo)研究函數(shù)在上單調(diào)性,可求得離心率的范圍.法二:令,,,,,根據(jù)直角三角形的性質(zhì)和勾股定理得,將離心率表示成關(guān)于角的三角函數(shù),根據(jù)三角函數(shù)的恒等變化轉(zhuǎn)化為關(guān)于的函數(shù),可求得離心率的范圍.【詳解】法一:,,,,,,設(shè),則,令,所以時(shí),,在上單調(diào)遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查求雙曲線的離心率的范圍的問題,關(guān)鍵在于將已知條件轉(zhuǎn)化為與雙曲線的有關(guān),從而將離心率表示關(guān)于某個(gè)量的函數(shù),屬于中檔題.15、【解析】
利用展開式各項(xiàng)系數(shù)之和求得的值,由此寫出展開式的通項(xiàng),令指數(shù)為零求得參數(shù)的值,代入通項(xiàng)計(jì)算即可得解.【詳解】的展開式各項(xiàng)系數(shù)和為,得,所以,的展開式通項(xiàng)為,令,得,因此,展開式中的常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中常數(shù)項(xiàng)的計(jì)算,涉及二項(xiàng)展開式中各項(xiàng)系數(shù)和的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,,,然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即又平分,所以,則,設(shè),則,,所以,所以,,所以的最大值是.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、利用向量解決幾何問題,同時(shí)考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個(gè)人命中,3-ξ個(gè)人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學(xué)期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.18、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見解析.【解析】
(1)求出,對分類討論,分別求出的解,即可得出結(jié)論;(2)由(1)得出有兩解時(shí)的范圍,以及關(guān)系,將,等價(jià)轉(zhuǎn)化為證明,不妨設(shè),令,則,即證,構(gòu)造函數(shù),只要證明對于任意恒成立即可.【詳解】(1)的定義域?yàn)镽,且.由,得;由,得.故當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)由(1)知當(dāng)時(shí),,且.當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)時(shí),直線與的圖像有兩個(gè)交點(diǎn),實(shí)數(shù)t的取值范圍是.方程有兩個(gè)不等實(shí)根,,,,,,即.要證,只需證,即證,不妨設(shè).令,則,則要證,即證.令,則.令,則,在上單調(diào)遞增,.,在上單調(diào)遞增,,即成立,即成立..【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)單調(diào)性、極值、零點(diǎn)、不等式證明,構(gòu)造函數(shù)函數(shù)是解題的關(guān)鍵,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.19、(1);(2)【解析】
(1)首先通過對絕對值內(nèi)式子符號(hào)的討論,將不等式轉(zhuǎn)化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因?yàn)楹瘮?shù)定義域?yàn)?,即恒成立,所以恒成立由單調(diào)性可知當(dāng)時(shí),有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當(dāng)且僅當(dāng),,時(shí),等號(hào)成立【點(diǎn)睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20、(1)(2)證明見解析【解析】
(1)將不等式化為,利用零點(diǎn)分段法,求得不等式的解集.(2)將要證明的不等式轉(zhuǎn)化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當(dāng)時(shí),不等式化為,∴當(dāng)時(shí),不等式化為,此時(shí)無解當(dāng)時(shí),不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點(diǎn)睛】本題考查絕對值不等式的性質(zhì)、解法,基本不等式等知識(shí);考查推理論證能力、運(yùn)算求解能力;考查化歸與轉(zhuǎn)化,分類與整合思想.21、(1);(2)是定值,.【解析】
(1)設(shè)出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年金屬制品交易協(xié)議3篇
- 2024年甲乙雙方關(guān)于機(jī)器設(shè)備采購的合同
- 2024年瓦工工程承包合同標(biāo)準(zhǔn)模板版
- 2025年度出租車行業(yè)新能源推廣與應(yīng)用合同3篇
- 2024年私人派對場地租用協(xié)議3篇
- 新部編版九年級道德與法治下冊謀求互利共贏完美課件
- 2024幼兒園幼兒接送車輛維護(hù)與安全合同3篇
- 鄭州旅游職業(yè)學(xué)院《醫(yī)學(xué)與法學(xué)專題講座》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇科技大學(xué)蘇州理工學(xué)院《城市設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 泉州工程職業(yè)技術(shù)學(xué)院《抽樣技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 教師口語教程教學(xué)課件匯總?cè)纂娮咏贪?完整版)
- 《形體舞蹈》課程思政教學(xué)案例(一等獎(jiǎng))
- 風(fēng)電機(jī)組電氣仿真模型建模導(dǎo)則(征求意見稿)
- 高考語文備考之從小說考點(diǎn)解讀《哦香雪》(知識(shí)點(diǎn)解讀+精品課件+比較閱讀+模擬命題)
- 2022年中醫(yī)館相關(guān)制度
- 異常反應(yīng)調(diào)查診斷ppt課件
- 浙教版八年級下冊科學(xué)3.1空氣與氧氣(3課時(shí))(68張PPT)
- 道路減速帶減速模型分析
- 身體健康狀況自測表
- 50T汽車吊吊裝施工方案
- PID控制原理與調(diào)整方法
評論
0/150
提交評論