版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新疆鞏留縣高級(jí)中學(xué)2024年高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知斜率為的直線與雙曲線交于兩點(diǎn),若為線段中點(diǎn)且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.3 C. D.2.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.3.函數(shù)的大致圖象是A. B. C. D.4.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.5.已知函數(shù),對(duì)任意的,,當(dāng)時(shí),,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對(duì)稱軸是 D.函數(shù)的一個(gè)對(duì)稱中心是6.下圖是民航部門統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價(jià)格最高B.天津的往返機(jī)票平均價(jià)格變化最大C.上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)D.相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加7.如圖,在中,點(diǎn)是的中點(diǎn),過點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.38.已知向量,,則向量與的夾角為()A. B. C. D.9.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.過拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.11.為得到y(tǒng)=sin(2x-πA.向左平移π3個(gè)單位B.向左平移πC.向右平移π3個(gè)單位D.向右平移π12.已知拋物線的焦點(diǎn)為,過焦點(diǎn)的直線與拋物線分別交于、兩點(diǎn),與軸的正半軸交于點(diǎn),與準(zhǔn)線交于點(diǎn),且,則()A. B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.對(duì)任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.14.已知△ABC得三邊長(zhǎng)成公比為2的等比數(shù)列,則其最大角的余弦值為_____.15.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB16.若函數(shù)恒成立,則實(shí)數(shù)的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當(dāng)時(shí),求證:.18.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點(diǎn)個(gè)數(shù).19.(12分)某公司欲投資一新型產(chǎn)品的批量生產(chǎn),預(yù)計(jì)該產(chǎn)品的每日生產(chǎn)總成本價(jià)格)(單位:萬元)是每日產(chǎn)量(單位:噸)的函數(shù):.(1)求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本(即生產(chǎn)過程中一段時(shí)間的總成本對(duì)該段時(shí)間產(chǎn)量的導(dǎo)數(shù));(2)記每日生產(chǎn)平均成本求證:;(3)若財(cái)團(tuán)每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.20.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.21.(12分)在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長(zhǎng).22.(10分)已知函數(shù).(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
設(shè),代入雙曲線方程相減可得到直線的斜率與中點(diǎn)坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.【點(diǎn)睛】本題考查求雙曲線的離心率,解題方法是點(diǎn)差法,即出現(xiàn)雙曲線的弦中點(diǎn)坐標(biāo)時(shí),可設(shè)弦兩端點(diǎn)坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點(diǎn)坐標(biāo)之間的關(guān)系.2、D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.3、A【解析】
利用函數(shù)的對(duì)稱性及函數(shù)值的符號(hào)即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項(xiàng);當(dāng)時(shí),,可排除D選項(xiàng);當(dāng)時(shí),,當(dāng)時(shí),,即,可排除C選項(xiàng),故選:A【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,函數(shù)對(duì)稱性的應(yīng)用,屬于中檔題.4、B【解析】
求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5、D【解析】
利用輔助角公式將正弦函數(shù)化簡(jiǎn),然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對(duì)于A,,故A錯(cuò)誤;對(duì)于B,由,解得,故B錯(cuò)誤;對(duì)于C,當(dāng)時(shí),,故C錯(cuò)誤;對(duì)于D,由,故D正確.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.6、D【解析】
根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對(duì)選項(xiàng)逐一分析,由此得出敘述不正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價(jià)格最高,所以A選項(xiàng)敘述正確.對(duì)于B選項(xiàng),根據(jù)折線圖可知天津的往返機(jī)票平均價(jià)格變化最大,所以B選項(xiàng)敘述正確.對(duì)于C選項(xiàng),根據(jù)條形圖可知上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng),所以C選項(xiàng)敘述正確.對(duì)于D選項(xiàng),根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個(gè)城市的往返機(jī)票平均價(jià)格在增加,故D選項(xiàng)敘述錯(cuò)誤.故選:D【點(diǎn)睛】本小題主要考查根據(jù)條形圖和折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.7、C【解析】
連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.8、C【解析】
求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時(shí),通常代入公式進(jìn)行計(jì)算.9、B【解析】
三視圖對(duì)應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對(duì)應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來求其體積,本題屬于基礎(chǔ)題.10、B【解析】
利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【點(diǎn)睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.11、D【解析】試題分析:因?yàn)椋詾榈玫統(tǒng)=sin(2x-π3)的圖象,只需要將考點(diǎn):三角函數(shù)的圖像變換.12、B【解析】
過點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進(jìn)而求得結(jié)果.【詳解】過點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由拋物線解析式知:,準(zhǔn)線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點(diǎn)睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.14、-【解析】試題分析:根據(jù)題意設(shè)三角形的三邊長(zhǎng)分別設(shè)為為a,2a,2a,∵2a>2a>a,∴2a所對(duì)的角為最大角,設(shè)為θ,則根據(jù)余弦定理得考點(diǎn):余弦定理及等比數(shù)列的定義.15、-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點(diǎn)睛】突破本題的關(guān)鍵是抓住題中所給圖形的特點(diǎn),利用平面向量基本定理和向量的加減運(yùn)算,將所給向量統(tǒng)一用AC,16、【解析】
若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時(shí)的,解關(guān)于的不等式,再取并集,即得?!驹斀狻坑深}意得,只要即可,,當(dāng)時(shí),令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時(shí),有最小值,,若恒成立,則,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),,單調(diào)遞增,,不合題意,舍去.綜上,實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是??碱}型。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的極小值為,無極大值.(2)見解析.【解析】
(1)對(duì)求導(dǎo),確定函數(shù)單調(diào)性,得到函數(shù)極值.(2)構(gòu)造函數(shù),證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調(diào)遞減,在上單調(diào)遞增,所以的極小值為,無極大值.(2)當(dāng)時(shí),要證,即證.令,則,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí),,所以,即.因?yàn)闀r(shí),,所以當(dāng)時(shí),,所以當(dāng)時(shí),不等式成立.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,極值,不等式的證明,構(gòu)造函數(shù)是解題的關(guān)鍵.18、(1)(2)答案見解析(3)答案見解析【解析】
(1)設(shè)曲線在點(diǎn),處的切線的斜率為,可求得,,利用直線的點(diǎn)斜式方程即可求得答案;(2)由(Ⅰ)知,,分時(shí),,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線在點(diǎn),處的切線的斜率為,則,又,曲線在點(diǎn),處的切線方程為:,即;(2)由(1)知,,故當(dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時(shí),單調(diào)遞增為,無遞減區(qū)間;當(dāng)時(shí),的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),的遞增區(qū)間為,遞減區(qū)間為,;(3)當(dāng)時(shí),恒成立,所以無零點(diǎn);當(dāng)時(shí),由,得:,只有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想與推理、運(yùn)算能力,屬于中檔題.19、(1);(2)證明見解析;(3)證明見解析.【解析】
(1)求得函數(shù)的導(dǎo)函數(shù),由此求得求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本.(2)將所要證明不等式轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得不等式成立.(3)利用(2)的結(jié)論,判斷出,由此結(jié)合對(duì)數(shù)運(yùn)算,證得.【詳解】(1)因?yàn)樗援?dāng)時(shí),(2)要證,只需證,即證,設(shè)則所以在上單調(diào)遞減,所以所以,即;(3)因?yàn)橛钟桑?)知,當(dāng)時(shí),所以所以所以【點(diǎn)睛】本小題主要考查導(dǎo)數(shù)的計(jì)算,考查利用導(dǎo)數(shù)證明不等式,考查放縮法證明數(shù)列不等式,屬于難題.20、(1)1(2)【解析】
(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因?yàn)椋栽趩握{(diào)遞增,又,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故方程①有且僅有唯一解,實(shí)數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.令(),則.(i)若時(shí),,在單調(diào)遞增,所以,滿足題意.(ii)若時(shí),,滿足題意.(iii)若時(shí),,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,所以,即.變形得,,所以時(shí),,所以當(dāng)時(shí),.又由上式得,當(dāng)時(shí),,,.因此不等式(*)均成立.令(),則,(i)若時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.(ii)若時(shí),,在單調(diào)遞增,所以.因此,①當(dāng)時(shí),此時(shí),,,則需由(*)知,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),所以.②當(dāng)時(shí),此時(shí),,則當(dāng)時(shí),(由(*)知);當(dāng)時(shí),(由(*)知).故對(duì)于任意,.綜上述:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對(duì)于恒成立問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024屆廣東肇慶市高三4月質(zhì)量調(diào)研(二模)考試數(shù)學(xué)試題
- 餐飲店合同補(bǔ)充協(xié)議范本
- 財(cái)產(chǎn)處份協(xié)議書
- 亳州公證處合同公證收費(fèi)標(biāo)準(zhǔn)
- 北京市租房標(biāo)準(zhǔn)合同
- 山西省2024八年級(jí)物理上冊(cè)第三章物態(tài)變化第2節(jié)熔化和凝固第2課時(shí)熔化和凝固的應(yīng)用課件新版新人教版
- 設(shè)備維修班長(zhǎng)述職報(bào)告
- 湖南省益陽市赫山區(qū)箴言龍光橋?qū)W校2024-2025學(xué)年四年級(jí)上學(xué)期期中考試數(shù)學(xué)試題(無答案)
- 《J類船用筒形觀察器》
- 廣西柳州市2024-2025學(xué)年七年級(jí)上學(xué)期11月期中考試數(shù)學(xué)試題(含答案)
- 2023-年2月山東公務(wù)員錄用考試《申論B》考試真題
- 小學(xué)語文教育職業(yè)生涯規(guī)劃
- 營(yíng)銷商務(wù)類管培生
- 小學(xué)語文教師如何應(yīng)對(duì)數(shù)字化轉(zhuǎn)型的挑戰(zhàn)與機(jī)遇
- 《眼科與視功能檢查》-2.視力檢查課件(實(shí)操)
- 工會(huì)勞動(dòng)競(jìng)賽方案
- 小學(xué)二級(jí)培訓(xùn)課件
- 2024中國(guó)建材集團(tuán)所屬新天山水泥總部招聘1人高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 濕地生態(tài)修復(fù)方案
- 馬克思主義新聞?dòng)^教程 第二版 課件 第七章 列寧論社會(huì)主義新聞?wù)吲c蘇維埃傳媒
- 安徽省江南十校2023-2024學(xué)年高一上學(xué)期12月分科診斷模擬聯(lián)考數(shù)學(xué)試題
評(píng)論
0/150
提交評(píng)論