甘肅省慶陽市環(huán)縣重點(diǎn)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第1頁
甘肅省慶陽市環(huán)縣重點(diǎn)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第2頁
甘肅省慶陽市環(huán)縣重點(diǎn)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第3頁
甘肅省慶陽市環(huán)縣重點(diǎn)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第4頁
甘肅省慶陽市環(huán)縣重點(diǎn)名校2024年中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

甘肅省慶陽市環(huán)縣重點(diǎn)名校2024年中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.計(jì)算36÷(﹣6)的結(jié)果等于()A.﹣6 B.﹣9 C.﹣30 D.62.如圖,E為平行四邊形ABCD的邊AB延長線上的一點(diǎn),且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.323.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4.如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.5.下列運(yùn)算正確的是()A.3a2﹣2a2=1 B.a(chǎn)2?a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b26.若關(guān)于x的不等式組無解,則a的取值范圍是()A.a(chǎn)≤﹣3 B.a(chǎn)<﹣3 C.a(chǎn)>3 D.a(chǎn)≥37.已知關(guān)于x的二次函數(shù)y=x2﹣2x﹣2,當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,則a的值為()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣38.下列分式中,最簡分式是()A. B. C. D.9.如圖,在平面直角坐標(biāo)系中,是反比例函數(shù)的圖像上一點(diǎn),過點(diǎn)做軸于點(diǎn),若的面積為2,則的值是()A.-2 B.2 C.-4 D.410.如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),…,按此規(guī)律.則第(6)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為()A.20 B.27 C.35 D.40二、填空題(共7小題,每小題3分,滿分21分)11.閱讀材料:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長為.然后利用幾何知識(shí)可知:當(dāng)A、C、E在一條直線上時(shí),x=時(shí),AC+CE的最小值為1.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式的最小值為_____.12.當(dāng)關(guān)于x的一元二次方程ax2+bx+c=0有實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍時(shí),稱之為“倍根方程”.如果關(guān)于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值為_____.13.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長為__.14.如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個(gè)數(shù)是______.15.如圖,在矩形ABCD中,過點(diǎn)A的圓O交邊AB于點(diǎn)E,交邊AD于點(diǎn)F,已知AD=5,AE=2,AF=1.如果以點(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),那么r的取值范圍是______.16.已知點(diǎn),在二次函數(shù)的圖象上,若,則__________.(填“”“”“”)17.因式分解=______.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF(1)判斷AF與⊙O的位置關(guān)系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.19.(5分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).求二次函數(shù)y=ax2+2x+c的表達(dá)式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時(shí)點(diǎn)P的坐標(biāo);當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.20.(8分)已知函數(shù)的圖象與函數(shù)的圖象交于點(diǎn).(1)若,求的值和點(diǎn)P的坐標(biāo);(2)當(dāng)時(shí),結(jié)合函數(shù)圖象,直接寫出實(shí)數(shù)的取值范圍.21.(10分)如圖,AB是⊙O的直徑,C、D為⊙O上兩點(diǎn),且,過點(diǎn)O作OE⊥AC于點(diǎn)E⊙O的切線AF交OE的延長線于點(diǎn)F,弦AC、BD的延長線交于點(diǎn)G.(1)求證:∠F=∠B;(2)若AB=12,BG=10,求AF的長.22.(10分)計(jì)算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|23.(12分)隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.(1)本次調(diào)查的學(xué)生共有人,估計(jì)該校1200名學(xué)生中“不了解”的人數(shù)是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.24.(14分)為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購買一批足球,已知購買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.求A,B兩種品牌的足球的單價(jià).求該校購買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】分析:根據(jù)有理數(shù)的除法法則計(jì)算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點(diǎn)睛:本題主要考查了有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對值相除.2除以任何一個(gè)不等于2的數(shù),都得2.2、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關(guān)鍵.3、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項(xiàng)錯(cuò)誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項(xiàng)錯(cuò)誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項(xiàng)正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、B【解析】試題分析:作點(diǎn)P關(guān)于OA對稱的點(diǎn)P3,作點(diǎn)P關(guān)于OB對稱的點(diǎn)P3,連接P3P3,與OA交于點(diǎn)M,與OB交于點(diǎn)N,此時(shí)△PMN的周長最?。删€段垂直平分線性質(zhì)可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點(diǎn):3.線段垂直平分線性質(zhì);3.軸對稱作圖.5、D【解析】

根據(jù)合并同類項(xiàng)法則,可知3a2﹣2a2=a2,故不正確;根據(jù)同底數(shù)冪相乘,可知a2?a3=a5,故不正確;根據(jù)完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正確;根據(jù)完全平方公式,可知(a+b)2=a2+2ab+b2,正確.故選D.【詳解】請?jiān)诖溯斎朐斀猓?、A【解析】【分析】利用不等式組取解集的方法,根據(jù)不等式組無解求出a的取值范圍即可.【詳解】∵不等式組無解,∴a﹣4≥3a+2,解得:a≤﹣3,故選A.【點(diǎn)睛】本題考查了一元一次不等式組的解集,熟知一元一次不等式組的解集的確定方法“同大取大、同小取小、大小小大中間找、大大小小無處找”是解題的關(guān)鍵.7、A【解析】分析:詳解:∵當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故選A.點(diǎn)睛:本題考查了求二次函數(shù)的最大(小)值的方法,注意:只有當(dāng)自變量x在整個(gè)取值范圍內(nèi),函數(shù)值y才在頂點(diǎn)處取最值,而當(dāng)自變量取值范圍只有一部分時(shí),必須結(jié)合二次函數(shù)的增減性及對稱軸判斷何處取最大值,何處取最小值.8、A【解析】試題分析:選項(xiàng)A為最簡分式;選項(xiàng)B化簡可得原式==;選項(xiàng)C化簡可得原式==;選項(xiàng)D化簡可得原式==,故答案選A.考點(diǎn):最簡分式.9、C【解析】

根據(jù)反比例函數(shù)k的幾何意義,求出k的值即可解決問題【詳解】解:∵過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,△OPQ的面積為2,

∴||=2,

∵k<0,

∴k=-1.

故選:C.【點(diǎn)睛】本題考查反比例函數(shù)k的幾何意義,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.10、B【解析】試題解析:第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的圖象有2+3=5個(gè),第(3)個(gè)圖形中面積為1的正方形有2+3+4=9個(gè),…,按此規(guī)律,第n個(gè)圖形中面積為1的正方形有2+3+4+…+(n+1)=個(gè),則第(6)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為2+3+4+5+6+7=27個(gè).故選B.考點(diǎn):規(guī)律型:圖形變化類.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】

根據(jù)已知圖象,重新構(gòu)造直角三角形,利用三角形相似得出CD的長,進(jìn)而利用勾股定理得出最短路徑問題.【詳解】如圖所示:C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=5,DE=3,BD=12,當(dāng)A,C,E,在一條直線上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當(dāng)x=時(shí),代數(shù)式有最小值,此時(shí)為:.故答案是:4.【點(diǎn)睛】考查最短路線問題,利用了數(shù)形結(jié)合的思想,可通過構(gòu)造直角三角形,利用勾股定理求解.12、-1或-4【解析】分析:設(shè)“倍根方程”的一個(gè)根為,則另一根為,由一元二次方程根與系數(shù)的關(guān)系可得,由此可列出關(guān)于m的方程,解方程即可求得m的值.詳解:由題意設(shè)“倍根方程”的一個(gè)根為,另一根為,則由一元二次方程根與系數(shù)的關(guān)系可得:,∴,∴,化簡整理得:,解得.故答案為:-1或-4.點(diǎn)睛:本題解題的關(guān)鍵是熟悉一元二次方程根與系數(shù)的關(guān)系:若一元二次方程的兩根分別為,則.13、1【解析】

試題分析:如圖,延長CF交AB于點(diǎn)G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點(diǎn)D是BC中點(diǎn),∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.14、①②③④.【解析】

由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對應(yīng)邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,F(xiàn)G⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.15、【解析】

因?yàn)橐渣c(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),則圓D與圓O相交,圓心距滿足關(guān)系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計(jì)算即可.【詳解】連接OA、OD,過O點(diǎn)作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),則圓D與圓O相交∴【點(diǎn)睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時(shí)圓的半徑與圓心距的關(guān)系是關(guān)鍵.16、【解析】拋物線的對稱軸為:x=1,∴當(dāng)x>1時(shí),y隨x的增大而增大.∴若x1>x2>1

時(shí),y1>y2

.故答案為>17、.【解析】解:==,故答案為:.三、解答題(共7小題,滿分69分)18、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點(diǎn),即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應(yīng)角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點(diǎn):1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).19、(1)y=﹣x2+2x+3(2)(,)(3)當(dāng)點(diǎn)P的坐標(biāo)為(,)時(shí),四邊形ACPB的最大面積值為【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對角線互相垂直且平分,可得P點(diǎn)的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點(diǎn)坐標(biāo);(3)根據(jù)平行于y軸的直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.【詳解】(1)將點(diǎn)B和點(diǎn)C的坐標(biāo)代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點(diǎn)P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點(diǎn)P的縱坐標(biāo),當(dāng)時(shí),即解得(不合題意,舍),∴點(diǎn)P的坐標(biāo)為(3)如圖2,P在拋物線上,設(shè)P(m,﹣m2+2m+3),設(shè)直線BC的解析式為y=kx+b,將點(diǎn)B和點(diǎn)C的坐標(biāo)代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設(shè)點(diǎn)Q的坐標(biāo)為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當(dāng)y=0時(shí),﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當(dāng)m=時(shí),四邊形ABPC的面積最大.當(dāng)m=時(shí),,即P點(diǎn)的坐標(biāo)為當(dāng)點(diǎn)P的坐標(biāo)為時(shí),四邊形ACPB的最大面積值為.【點(diǎn)睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用菱形的性質(zhì)得出P點(diǎn)的縱坐標(biāo),又利用了自變量與函數(shù)值的對應(yīng)關(guān)系;解(3)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì).20、(1),,或;(2).【解析】【分析】(1)將P(m,n)代入y=kx,再結(jié)合m=2n即可求得k的值,聯(lián)立y=與y=kx組成方程組,解方程組即可求得點(diǎn)P的坐標(biāo);(2)畫出兩個(gè)函數(shù)的圖象,觀察函數(shù)的圖象即可得.【詳解】(1)∵函數(shù)的圖象交于點(diǎn),∴n=mk,∵m=2n,∴n=2nk,∴k=,∴直線解析式為:y=x,解方程組,得,,∴交點(diǎn)P的坐標(biāo)為:(,)或(-,-);(2)由題意畫出函數(shù)的圖象與函數(shù)的圖象如圖所示,∵函數(shù)的圖象與函數(shù)的交點(diǎn)P的坐標(biāo)為(m,n),∴當(dāng)k=1時(shí),P的坐標(biāo)為(1,1)或(-1,-1),此時(shí)|m|=|n|,當(dāng)k>1時(shí),結(jié)合圖象可知此時(shí)|m|<|n|,∴當(dāng)時(shí),≥1.【點(diǎn)睛】本題考查了反比例函數(shù)與正比例函數(shù)的交點(diǎn),待定系數(shù)法等,運(yùn)用數(shù)形結(jié)合思想解題是關(guān)鍵.21、(1)見解析;(2).【解析】

(1)根據(jù)圓周角定理得到∠GAB=∠B,根據(jù)切線的性質(zhì)得到∠GAB+∠GAF=90°,證明∠F=∠GAB,等量代換即可證明;(2)連接OG,根據(jù)勾股定理求出OG,證明△FAO∽△BOG,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.【詳解】(1)證明:∵,∴.∴∠GAB=∠B,∵AF是⊙O的切線,∴AF⊥AO.∴∠GAB+∠GAF=90°.∵OE⊥AC,∴∠F+∠GAF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論