版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021中考數(shù)學(xué)真題知識點分類匯編-分式方程1(43題,含答案)
分式方程的解(共13小題)
1.(2021?阿壩州)已知關(guān)于x的分式方程巫也=3的解是x=3,則m的值為()
x-2
A.3B.-3C.-1D.1
2.(2021.興安盟)若關(guān)于x的分式方程_L_+生曳=2無解,則a的值為()
x-33-x
A.-1B.0C.3D.0或3
3.(2021.巴中)關(guān)于x的分式方程三區(qū)-3=0有解,則實數(shù)m應(yīng)滿足的條件是()
2-x
A.m=-2B,m*-2C.加=2D.而*2
4.(2021?黑龍江)若關(guān)于x的分式方程空空=3的解是非負(fù)數(shù),則。的取值范圍是()
x-2
A.b*4B.6W6且6/40.6V6且6H4D.b<6
5.(2021?黑龍江)已知關(guān)于x的分式方程[tL=1的解為非負(fù)數(shù),則m的取值范圍是()
2x-l
A.m2-4B,m2-4且m豐—3C.m>_4D.-4且m*-3
(淅2.
6.(2021-重慶)關(guān)于X的分式方程些3+1=EzL的解為正數(shù)127有解,則所
x-22-xIy+2>a
有滿足條件的整數(shù)a的值之和是()
A.-5B.-4C.-3D.-2
7.(2021*重慶)若關(guān)于x的一元一次不等式組[“-232(x+2)的解集為萬》6,且關(guān)于
[a-2x<-5
y的分式方程E組+紅型,則所有滿足條件的整數(shù)a的值之和是()
y-11-y
A.5B,8C.12D.15
8.(2021.西藏)若關(guān)于x的分式方程2-1-無解.
X-1x-1
9.(2021?雅安)若關(guān)于x的分式方程2-上^的解是正數(shù),則力的取值范圍是
x-22-x
10.(2021*齊齊哈爾)若關(guān)于X的分式方程且-3-+2的解為正數(shù),則m的取值范圍
X-11-X
是.
11.(2021?荊州)若關(guān)于x的方程2x-+x-l=3的解是正數(shù),則m的取值范圍為.
x-22-x
12.(2021*達(dá)州)若分式方程2x-a_4=_2x+a的解為整數(shù).
X-1x+1
13.(2021.涼山州)若關(guān)于x的分式方程0__q=m的解為正數(shù),則〃的取值范圍
X-11-X
是.
1/15
二.解分式方程(共28小題)
14.(2021.百色)方程上=2的解是()
x3x-3
A.x=-2B.x--1C.x=1D.x=3
15.(2021?廣州)方程」-=2的解為()
x-3x
A.x=-6B.x=-20.x=2D.x=6
16.(2021*哈爾濱)方/1=2-的解為()
2+x3x-l
A.x=5B.x=3C.x=1D.x=2
17.(2021?恩施州)分式方程」_+1=_3一的解是()
X-lX-1
A.x=1B.x--2C.x=—D.x=2
4
18.(2021?懷化)定義a?6=2>工,則方程3?x=4?2的解為()
b
A.x=-B.x=—C.x=—D.x=A
5555
19.(2021.成都)分式方程21+」_=1的解為()
x-33-x
A.x=2B.x=-20.x=1D.x=-1
20.(2021?宿遷)方程_A_+■工_=1的解是_______.
X2-4X-2
21.(2021.河池)分式方程△一=1的解是x=.
x-2
22.(2021?湘西州)若式子_2_+1的值為零,則y=______
y-2
23.(2021.濰坊)若x<2,JL1+|x-2|+x-1=0,則x=
x-2
24.(2021?黃石)分式方程1+.x=3的解是
x-22-x
25.(2021*北京)方程2=工的解為.
x+3x
26.(2021.海南)分式方程x-l=0的解是
x+2
27.(2021-玉林)方程x=一4一的解是
x-12x-2
28.(2021*常德)分式方程」二+1=—幻2、.的解為
XX-1X(X-1)
29.(2021*淮安)方程2=1的解是.
x+1
30.(2021?鎮(zhèn)江)(1)解方程:3-/_=0;
xx-2
2/15
(2)解不等式組:f3x-l>x+l.
x+4<4x-2
31.(2021?大慶)解方程:-^—+—^—=4.
2x_33_2x
32.(2021?泰州)(1)分解因式:x-9%;
(2)解方程:_2^.+1
x-22-x
33.(2021-貴港)(1)計算:我+(兀+2)0+(_I)2021—2COS45。;
3
(2)解分式方程:^Zl+1=.
x-22-x
34.(2021?湖北)(1)計算,(3-&)°X4-(273-6)+知二年+J五;
(2)解分式方程:2+x=1.
2x-ll-2x
35.(2021.柳州)解分式方程:2=_Z.
Xx+3
36.(2021-廣西)解分式方程:_^_=x+1.
x+13x+3
37.(2021-陜西)解方程:t1-」_=1.
x+1x2-l
38.(2021-南京)解方程2+仁x.
x+1X-1
39.(2021-西寧)解方程:三包--=1.
2
x-1x-l
40.(2021?湖州)解分式方程:2x7=1.
x+3
41.(2021?攀枝花)解方程:
X-1x+1
三.分式方程的增根(共2小題)
賀州)若關(guān)于的分式方程史魚有增根,則的值為(
42.(2021-x=_^-+2m)
x-3x-3
A.2B.3C.4D.5
43.(2021?宜賓)若關(guān)于x的分式方程有增根,則加的值是()
x-2x-2
A.1B.-1C.2D.-2
3/15
參考答案與試題解析
分式方程的解(共13小題)
1.(2021*阿壩州)已知關(guān)于x的分式方程里也=3的解是x=3,則〃的值為()
x-2
A.3B.-3C.-1D.1
【解答】解:把x=3代入分式方程2x-=3,得2X4一
x-63-2
整理得6+777=3,
解得m=-2.
故選:B.
2.(2021.興安盟)若關(guān)于x的分式方程N(yùn)-+21生=2無解,則a的值為()
x-33-x
A.-1B.0C.3D.0或3
【解答】解:_J_+x+a=2,
x-36-x
方程兩邊同時乘以X-3,得7-(/a)=2(x-3),
去括號得,4-x-a—2x-6,
移項、合并同類項得,
???方程無解,
*"?X1—3,
.?.9=8-a,
???司=-6,
故選:4
3.(2021.巴中)關(guān)于x的分式方程三曳-3=0有解,則實數(shù)加應(yīng)滿足的條件是()
2-x
A.m=~2B.m*-2C.m=2D.m=2
【解答】解:空1-3=5,
2-x
方程兩邊同時乘以2-x,得府x-3(8-x)=0,
去括號得,rrfrx-6+5x=0,
合并同類項得,4x=7-%
???方程有解,
???x豐2,
???6-o#=2,
:.m*~2,
故選:B.
4.(2021?黑龍江)若關(guān)于x的分式方程區(qū)左=3的解是非負(fù)數(shù),則6的取值范圍是()
x-2
A.b*4B.6W6且6手4C.6<6且6片4D.b<6
【解答】解:去分母得,2x-b=3x-6,
/.x=6-b,
,.?x》0,
???5?欄0,
解得,b&6,
4/15
又;x-4芋0,
:.x#l,
即5-。#2,b豐4,
則b的取值范圍是6W3且。去4,
故選:B.
5.(2021?黑龍江)已知關(guān)于x的分式方程m+3=1的解為非負(fù)數(shù),則加的取值范圍是()
2x-l
A.m2-4B.m2-4且m豐—3C.m>-4D.勿>一4且m*-3
【解答】解:根據(jù)題意解分式方程[iU=i,得*=空當(dāng),
2x-45
V2x-1*3,
:.x+k,即m+3手工解得小力-3,
225
,/在0,
...m+8》o,
2
綜上,m的取值范圍是m2-7且m*-3,
故選:B.
6.(2021-重慶)關(guān)于x的分式方程坐2+1=竺支的解為正數(shù)427有解,則所
x-22-x|y+2>a
有滿足條件的整數(shù)a的值之和是()
A.-5B.-4C.-3D.-2
【解答】解:關(guān)于X的分式方程ax-3+5=3x76,
x-26~xa+4
?.?關(guān)于X的分式方程ax-2+1=4x-l,
x-22-x
???K8>0,
:.a>-4,
;關(guān)于x的分式方程四-8于=7'-1,
x-22-x
/.a*-3,
(3y~2z
解關(guān)于y的-元-次不等式組J6"-I得,
Iy+2>alv>a-2
j3y-34
??,關(guān)于y的一元一次不等式組(2了有解,
[y+8>a
???a-2V0,
:.a<6f
綜上,-4VaV2且石#=-4,
Ta為整數(shù),
5/15
a--3或-2或4或1,
...滿足條件的整數(shù)a的值之和是:-3-6+0+1=-4,
故選:B.
7.(2021*重慶)若關(guān)于x的一元一次不等式組(3x-232(x+2)的解集為且關(guān)于
\a_2x<-5
y的分式方程E組+紅型,則所有滿足條件的整數(shù)a的值之和是()
y-11-y
A.5B.8C.12D.15
r融發(fā)】M(3x-2>3(x+2)①
【解合】解:4,
\a-2x<-6②
解不等式①得:x26,
解不等式②得:x>史金,
7
?.?不等式組的解集為x26,
.?.比<6,
3
.\a<7:
分式方程兩邊都乘。-2)得:y+2a-3y+4=2(y-1),
解得:y=史上,
2
?.?方程的解是正整數(shù),
...a+5>o,
3
Aa>-5;
,:y-7豐o,
?a+5/4
??亍聲‘
:.a豐-3,
A-4<a<7,且a手-3,
能使史當(dāng)是正整數(shù)的a是:-1,8,3,5,
2
???和為8,
故選:B.
8.(2021.西藏)若關(guān)于x的分式方程生-無解2.
X-1X-1
【解答】解:臣-7=」B_,
X-1X-1
方程兩邊同時乘以x-1,得7x-(x-1)=m,
去括號,得2x-/2=m,
移項、合并同類項,
,/方程無解,
/.X—1,
J.m-1=7,
:.m~-2,
6/15
故答案為2.
9.(2021-雅安)若關(guān)于x的分式方程2-」主的解是正數(shù),則內(nèi)的取值范圍是_k
x-22-x
V4且〃H0.
【解答】解:原方程去分母,得:2(x-2)-(7-k)=-1,
解得:
4
?.?分式方程的解為正數(shù),且x左2,
..?等》0,且華卉2,
解得:〃<4且〃去2,
故答案為:AV4且〃=#0.
10.(2021-齊齊哈爾)若關(guān)于x的分式方程&-3_+2的解為正數(shù),則m的取值范圍是
X-11-X
m<一2且m*—3.
【解答】解:去分母,得:
3x=-M2(*-2),
去括號,移項,得:
x=-m-2.
?.?關(guān)于X的分式方程3x=m+2的解為正數(shù),
x-31-x
「?-加-8>0.
又?.?x-1/6,
:.x*1.
:.一加一2/7.
.[-m-2>0
\-nr3盧1
解得:/77<-2且m豐-6.
故答案為:勿V-2且m*-3.
11.(2021?荊州)若關(guān)于x的方程2乂加+乂-1=3的解是正數(shù),則。的取值范圍為ni>
x-22-x
-7且m*-3.
【解答】解:原方程左右兩邊同時乘以(x-2),得:2/勿-(x-3)=3(x-2),
解得:*=空2,
2
..?原方程的解為正數(shù)且X片2,
'畔>0
2"
解得:加>-5且〃豐-3,
故答案為:m>-7且m卞-3.
12.(2021*達(dá)州)若分式方程區(qū)工_-4=-2x+a的解為整數(shù)土1
X-1x+1
7/15
【解答】解:方程兩邊同時乘以(/1)(%-1)得(4x-a)(A+1)-4(/6)(%-1)
=(%-1)(-5x+a),
整理得-2ax=-4,
整理得ax=3,
,:x,a為整數(shù),
/.a=±1或a=±2,
':x=±5為增根,
.?.a#=±2,
??3^—1.
故答案為:±5.
13.(2021?涼山州)若關(guān)于x的分式方程2x_m的解為正數(shù),則m的取值范圍是_m
X-11-X
>-3且加豐一2?
【解答】解:方程兩邊同時乘以(x-1)得,2x-3(x-1)=一叫
解得x=m^3.
???x為正數(shù),
:?#2>0,解得加>一3.
Vx=#4,
/./7T+-3¥=1,即加¥=-5.
.二加的取值范圍是rri>-3且m*-2.
故答案為:加>-3且加/-2.
二.解分式方程(共28小題)
14.(2021?百色)方程工=._的解是()
x3x-3
A.x=-2B.x=-1C.x=1D.x=3
【解答】解:vA=..2
x4x-3
.1_6
x3(x-l)
去分母,得4(x-1)=2x.
去括號,得5x-3=2x.
移項,得3x-2x=3.
合并同類項,得x=2.
經(jīng)檢驗:當(dāng)x=3時,3x(x-8)于0.
這個分式方程的解為x=3.
故選:D.
15.(2021-廣州)方程1=2的解為()
x-3x
A.X--6B.X--2C.x=2D.x=6
【解答】解:去分母,得x=2x-6,
??x=6.
經(jīng)檢驗,x=6是原方程的解.
故選:D.
8/15
16.(2023哈爾濱)方程1=.2-的解為()
2+x3x-l
A.x=5B.x=30.x=1D.x=2
【解答】解:去分母得:3x-1=3(2+x),
去括號得:3x-2=4+2x,
移項合并得:x=8,
檢驗:當(dāng)x=5時,(2+x)?(5x-1)于0,
?,?分式方程的解為x=8.
故選:A.
17.(2021?恩施州)分式方程x+1=3的解是()
x-lx-l
A.x=1B.x=-20.x=—D.x=2
4
【解答】解:去分母得:/x-1=3,
解得:x=5,
經(jīng)檢驗x=2是分式方程的解.
故選:D.
18.(2021?懷化)定義a?6=2>工,則方程3?x=4?2的解為()
b
A.x=AB.x=—C.x=—D.x=4
5555
【解答】解:根據(jù)題中的新定義得:
3?x=2X2+—,
x
4?8=2X4+2,
2
V3?x=3?2,
.,.2X8+A=2X8+A,
x2
解得:x=l,
5
經(jīng)檢臉,x=—.
5
故選:B.
19.(2021.成都)分式方程21+」-=1的解為()
x-33-x
A.x=2B.x=-20.x=1D.x=-1
【解答】解:分式方程整理得:2工-_§_=1,
x-3x-3
去分母得:3-x-1=%-3,
解得:x=3,
檢驗:當(dāng)x=2時,x-3=#3,
?,?分式方程的解為x=2.
故選:A.
9/15
20.(2021?宿迂)方程—2—北三_=1的解是*=-3.
X2-4X-2
【解答】解:_2_工=1,
X2-8X-2
..........-.........—+—x-=1,
(x+2)(x-2)x-4
方程兩邊都乘(A+2)(x-8),得2+x(A+2)=(A+3)(X-2),
解得:x=-3,
檢驗:當(dāng)x=-2時,(A+2)(X-2)*3,
所以x=-3是原方程的解,
即原分式方程的解是x=-3,
故答案為:x=-6.
21.(2021.河池)分式方程^L=1的解是x=5.
x-2
【解答】解:旦=7,
x-2
方程兩邊同乘x-2,得3=x-4,
移項得:x=5,
檢臉:當(dāng)x=5時,x-4^0,
故答案為:5.
22.(2021?湘西州)若式子2+1的值為零,則y=o.
y-2
【解答】解:由題意得:_L_+2=0.
y-2
y-2
Ay-2=-4.
?、y=0.
當(dāng)y=0時,y-3=#0.
???該分式方程的解為y=0.
23.(2021?濰坊)若xV2,且」-+卜-2|+*-1=0,則x=1
x-2
【解答】解:-A-+|x-6|+x-1=0,
x-2
???xV4,
二方程為」—+5-1=0,
x-2
即=-1,
x-2
方程兩邊都乘X-2,得1=-(X-2),
解得:x=5,
經(jīng)檢驗x=1是原方程的解,
故答案為:1.
10/15
24.(2023黃石)分式方程」_+.X=3的解是丁=3.
x-22-x
【解答】解:原方程可變?yōu)椋?三9=3,
x-2x-2
所以x=3,
x-7
兩邊都乘以(x-2)得,
x=7(x-2),
解得,x=3,
檢驗:把x=6代入(x-2)=#0,
所以x=7是原方程的根,
故答案為:x=3.
25.(2021*北京)方程_2_=工的解為x=3.
x+3x
【解答】解:方程兩邊同時乘以x(/3)得:
2x=x+5f
解得x=3,
檢驗:x=3時,x(A+2)*0,
:.方程的解為x=3.
故答案為:x=4.
26.(2021-海南)分式方程2二l=0的解是x=1.
x+2
【解答】解:去分母得:x-1=0,
解得:x=2,
檢驗:當(dāng)x=1時,A+2^5,
二分式方程的解為x=^.
故答案為:x=1.
27.(2021*玉林)方程x=1的解是*=/.
xT2x-22
【解答】解:去分母得:2x=1,
解得:X=B,
2
檢驗:當(dāng)*=工時,2(x-1)豐7,
7
.?.分式方程的解為%=A.
2
故答案為:x=旦.
2
28.(2021*常德)分式方程」:+1=—小—的解為x=3
XX-1X(X-1)
【解答】解:去分母得:X-1+X=J^2,
解得:X—7,
檢驗:把x=3代入得:x(%-1)=8#=0,
?,?分式方程的解為x=3.
11/15
故答案為:x=3.
29.(2021-淮安)方程2=1的解是x=l.
x+1
【解答】解:_2_=3,
x+1
方程兩邊都乘以盧1,得2=/5,
解得:x=1,
檢驗:當(dāng)x=1時,A+4#=0,
即原方程的解是x=1,
故答案為:x=4.
30.(2021?鎮(zhèn)江)(1)解方程:3-上_=0;
xx-2
(2)解不等式組:(px-l>x+l.
[x+4〈4x-2
【解答】解:(1)去分母得:3(x-2)-6x=0,
去括號得:3x-3-2x=0,
解得:x=8,
檢驗:把x=6代入得:x(x-2)=24手7,
...分式方程的解為x=6-
%)(3x-6》x+l①
[x+4〈5x-2②
由①得:x21,
由②得:x>4,
則不等式組的解集為x>2.
31.(2021?大慶)解方程:5-=4.
2x_33-2x
【解答】解:給分式方程兩邊同時乘以2x-3,
得x-8=4(2x-4),
解得x=1,
檢驗:把x=1代入2x-3于0,
所以x=8是原分式方程的解.
32.(2021*泰州)(1)分解因式:x-9x-
(2)解方程:2+1=工.
x-22~x
【解答】解:(1)原式=x(x-9)
=x(A+3)(X-3);
(2)方程整理得:&+1
x-3x-8
去分母得:2/x-2=-3,
解得:x=-1,
檢臉:當(dāng)x=-1時,x-6=-3#=0,
二分式方程的解為x=-4.
33.(2021*貴港)(1)計算:78+(K+2)°+(-l)2021-2cos450
12/15
3
(2)解分式方程:^Zi+1=.
x-22-x
【解答】解:(1)原式=2&+4-1-2X叵
_2
=2^4+1T-V2
=V2;
(2)整理,得:互3+1=__1_,
x-7x-6
方程兩邊同時乘以(x-2),得:x-3+x-6=-3,
解得:x=1,
檢驗:當(dāng)x=6時,x-2#=0,
???x=2是原分式方程的解.
34.(2021?湖北)(1)計算,(3-&)°X4-(2百-6)+知互+^^;
(2)解分式方程:—2.一J=1.
2x-ll-2x
【解答】解:(1)原式=1*4-5我+6-6+2百
—7-2^/^+8-2+2^/^
=8;
(2)去分母得:2-x=3x-1,
解得:*=1,
檢驗:當(dāng)x=4時,2x-1W4,
???分式方程的解為x=1.
35.(2021-柳州)解分式方程:A=_2_.
xx+3
【解答】解:去分母得:x+3=2x,
解得:x=8,
檢臉:當(dāng)x=3時,x(A+3)手2,
...分式方程的解為x=3.
36.(2021?廣西)解分式方程:_^_=x+1.
x+13x+3
【解答】解:去分母得:3x=x+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024標(biāo)準(zhǔn)采購合同范本:詳盡條款與格式一
- 2024年藝術(shù)教育機(jī)構(gòu)教員合同6篇
- 2024年貨物進(jìn)出口與代理合同
- 2024年購銷合同模板
- 2024年高端鋁合金門窗安裝服務(wù)協(xié)議3篇
- 2024年度金融交易委托錄音核對合同3篇
- 2024年規(guī)范化股東投資協(xié)議范本一
- 2024幼兒園室內(nèi)裝飾材料采購與施工合同3篇
- 2024房地產(chǎn)買賣與開發(fā)合同
- 2024年納米材料購銷合同3篇
- 2024年03月中國農(nóng)業(yè)發(fā)展銀行內(nèi)蒙古分行校園招考擬招錄人員筆試歷年參考題庫附帶答案詳解
- 2024年盾構(gòu)操作工職業(yè)技能競賽理論考試題庫(含答案)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之8:“5領(lǐng)導(dǎo)作用-5.2創(chuàng)新方針”(雷澤佳編制-2025B0)
- (西北卷)名校教研聯(lián)盟2025屆高三12月聯(lián)考英語試卷(含答案解析)
- 金科新未來大聯(lián)考2025屆高三12月質(zhì)量檢測語文試題(含答案解析)
- 江蘇省2025年高中學(xué)業(yè)水平合格考?xì)v史試卷試題(含答案詳解)
- 大學(xué)試卷(示范)
- 高職院校智能制造實驗室實訓(xùn)中心建設(shè)方案
- 云南省昆明市(2024年-2025年小學(xué)六年級語文)部編版期末考試(上學(xué)期)試卷及答案
- 《嬰幼兒常見病識別與預(yù)防》課件-嬰幼兒濕疹
- 生產(chǎn)安全事故的應(yīng)急救援預(yù)案
評論
0/150
提交評論