




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市市西初級中學2024屆高考數(shù)學倒計時模擬卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.2.已知公差不為0的等差數(shù)列的前項的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.403.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度4.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里5.若實數(shù)滿足不等式組則的最小值等于()A. B. C. D.6.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.7.已知向量,,則與的夾角為()A. B. C. D.8.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關(guān)于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定9.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要10.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.11.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.312.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.14.在中,角,,所對的邊分別邊,且,設(shè)角的角平分線交于點,則的值最小時,___.15.如圖,某地一天從時的溫度變化曲線近似滿足函數(shù),則這段曲線的函數(shù)解析式為______________.16.若函數(shù)為奇函數(shù),則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結(jié)果是正確的.(1)試判斷誰的計算結(jié)果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)為的概率.18.(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.19.(12分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.20.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實數(shù)a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數(shù)a的值;若不存在,請說明理由.21.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點為,當變化時,點構(gòu)成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.22.(10分)已知函數(shù)(mR)的導函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.2、B【解析】
,將代入,求得公差d,再利用等差數(shù)列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數(shù)列的前n項和公式,考查等差數(shù)列基本量的計算,是一道容易題.3、B【解析】
分析:根據(jù)三角函數(shù)的圖象關(guān)系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.4、C【解析】
設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.5、A【解析】
首先畫出可行域,利用目標函數(shù)的幾何意義求的最小值.【詳解】解:作出實數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.【點睛】本題考查了簡單線性規(guī)劃問題,求目標函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.6、A【解析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質(zhì)應用,側(cè)重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).7、B【解析】
由已知向量的坐標,利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.8、A【解析】
利用的坐標為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據(jù)題意,得點的坐標為.設(shè)直線的方程為,點,的坐標分別為,.討論:當時,;當時,據(jù),得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題9、B【解析】
根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.10、A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數(shù),再求出四個面中任選2個的方法數(shù),從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個數(shù).11、B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.12、C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關(guān)系的應用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬于中檔題.14、【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當且僅當時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應用,以及基本不等式求最值,考查計算能力.15、,【解析】
根據(jù)圖象得出該函數(shù)的最大值和最小值,可得,,結(jié)合圖象求得該函數(shù)的最小正周期,可得出,再將點代入函數(shù)解析式,求出的值,即可求得該函數(shù)的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數(shù)的半個周期,則,.又,,得,取,所以,.故答案為:,.【點睛】本題考查由圖象求函數(shù)解析式,考查計算能力,屬于中等題.16、-2【解析】
由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數(shù)性質(zhì)的應用,考查學生的計算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)乙同學正確;(2).【解析】
(1)根據(jù)變量且有線性負相關(guān)關(guān)系判斷甲不正確.根據(jù)回歸直線方程過樣本中心點,判斷出乙正確.(2)由線性回歸方程得到的估計數(shù)據(jù),計算出誤差,求得“理想數(shù)據(jù)”的個數(shù),由此利用古典概型概率計算公式,求得所求概率.【詳解】(1)已知變量具有線性負相關(guān)關(guān)系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數(shù)據(jù)如下表:021212由上表可知,“理想數(shù)據(jù)”的個數(shù)為.用列舉法可知,從個不同數(shù)據(jù)里抽出個不同數(shù)據(jù)的方法有種.從符合條件的個不同數(shù)據(jù)中抽出個,還要在不符合條件的個不同數(shù)據(jù)中抽出個的方法有種.故所求概率為【點睛】本小題主要考查回歸直線方程的判斷,考查古典概型概率計算,考查數(shù)據(jù)處理能力,屬于中檔題.18、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標系方程,由可得曲線的直角坐標方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.19、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結(jié)合絕對值不等式的性質(zhì)即可證得題中的結(jié)論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.20、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】
(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點M(2,0),計算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因為m為整數(shù),故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+5=0,即y=ax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直線ax﹣y+5=0交圓于A,B兩點,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以實數(shù)a的取值范圍是().(3)設(shè)符合條件的實數(shù)a存在,則直線l的斜率為,l的方程為,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圓心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在實數(shù)使得過點P(﹣2,4)的直線l垂直平分弦AB.【點睛】本題考查了直線和圓的位置關(guān)系,意在考查學生的計算能力和轉(zhuǎn)化能力.21、(1);(2)證明見解析【解析】
(1)由恒成立,可得恒成立,進而構(gòu)造函數(shù),求導可判斷出的單調(diào)性,進而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進而可得,即曲線的方程為,進而只需證明對任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點,即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時,;時,,即時,;時,,時,單調(diào)遞減;時,單調(diào)遞增,時,取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點,則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當時,恒成立,在上單調(diào)遞增.,,,存在滿足時,使得.又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級上冊數(shù)學教案 - 5.3 分餅 北師大版
- 2025年租憑合同延期申請書模板
- 五年級下冊數(shù)學教案-練習一 北師大版
- 三年級上冊語文部編版期中測試卷(含答案)
- 2024年水電站計算機監(jiān)控裝置項目資金申請報告代可行性研究報告
- 2025年濟南工程職業(yè)技術(shù)學院單招職業(yè)傾向性測試題庫含答案
- 《7 秋季星空》 教學設(shè)計-2023-2024學年科學六年級上冊青島版
- 我為爸爸慶祝父親節(jié)教案教學設(shè)計
- 2025年廣東省建筑安全員-A證考試題庫附答案
- 2025年桂林信息工程職業(yè)學院單招職業(yè)傾向性測試題庫帶答案
- 使用農(nóng)產(chǎn)品承諾函
- 小學生四年級健康知識講座
- 中醫(yī)主任述職報告
- 通防培訓課件
- 撤場通知書( 模板)
- 音樂識譜節(jié)奏訓練課件
- 七年級數(shù)學上冊期末試卷(可打印)
- richcui美國sspc富鋅底漆解讀
- 學前兒童游戲(中職學前教育專業(yè))PPT完整版全套教學課件
- 人教版高中地理必修一全冊測試題(16份含答案)
- GN汽車吊吊裝專項安全方案講義
評論
0/150
提交評論