![北京四中2023-2024學年高三二診模擬考試數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view2/M00/1C/2C/wKhkFmYrA3-ATQ-tAAIbJ9ebCRM243.jpg)
![北京四中2023-2024學年高三二診模擬考試數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view2/M00/1C/2C/wKhkFmYrA3-ATQ-tAAIbJ9ebCRM2432.jpg)
![北京四中2023-2024學年高三二診模擬考試數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view2/M00/1C/2C/wKhkFmYrA3-ATQ-tAAIbJ9ebCRM2433.jpg)
![北京四中2023-2024學年高三二診模擬考試數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view2/M00/1C/2C/wKhkFmYrA3-ATQ-tAAIbJ9ebCRM2434.jpg)
![北京四中2023-2024學年高三二診模擬考試數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view2/M00/1C/2C/wKhkFmYrA3-ATQ-tAAIbJ9ebCRM2435.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京四中2023-2024學年高三二診模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了2.已知集合,,則集合的真子集的個數(shù)是()A.8 B.7 C.4 D.33.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.34.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.5.如圖是來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.6.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)7.若,則()A. B. C. D.8.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.9.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元10.設全集集合,則()A. B. C. D.11.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.12.()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,所有的奇數(shù)次冪項的系數(shù)和為-64,則實數(shù)的值為__________.14.設隨機變量服從正態(tài)分布,若,則的值是______.15.已知是第二象限角,且,,則____.16.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.18.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.19.(12分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,,求的值.20.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.21.(12分)某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學季利潤不少于4800元的概率.22.(10分)設函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.2、D【解析】
轉化條件得,利用元素個數(shù)為n的集合真子集個數(shù)為個即可得解.【詳解】由題意得,,集合的真子集的個數(shù)為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數(shù)問題,屬于基礎題.3、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.4、B【解析】
作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規(guī)劃的應用,根據(jù)目標函數(shù)的幾何意義結合斜率公式是解決本題的關鍵.5、D【解析】
由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結合同角三角函數(shù)的基本關系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關系,考查了二倍角公式.本題的關鍵是由面積比求出角的正切值.6、D【解析】
求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補集的定義寫出運算結果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點睛】該題考查的是有關集合的問題,涉及到的知識點有函數(shù)的定義域,函數(shù)的值域,集合的運算,屬于基礎題目.7、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變變換,同角三角函數(shù)關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.8、C【解析】
先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎題.9、D【解析】
設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.10、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.11、D【解析】
取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D【點睛】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.12、A【解析】
利用復數(shù)的乘方和除法法則將復數(shù)化為一般形式,結合復數(shù)的模長公式可求得結果.【詳解】,,因此,.故選:A.【點睛】本題考查復數(shù)模長的計算,同時也考查了復數(shù)的乘方和除法法則的應用,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3或-1【解析】
設,分別令、,兩式相減即可得,即可得解.【詳解】設,令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點睛】本題考查了二項式定理的應用,考查了運算能力,屬于中檔題.14、1【解析】
由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學生對該知識的理解掌握水平和分析推理能力.15、【解析】
由是第二象限角,且,可得,由及兩角和的正切公式可得的值.【詳解】解:由是第二象限角,且,可得,,由,可得,代入,可得,故答案為:.【點睛】本題主要考查同角三角函數(shù)的基本關系及兩角和的正切公式,相對不難,注意運算的準確性.16、【解析】
根據(jù)題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質(zhì)及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、橫線處任填一個都可以,面積為.【解析】
無論選哪一個,都先由正弦定理化邊為角后,由誘導公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進行邊角轉換,求三角形面積時,①若三角形中已知一個角(角的大小或該角的正、余弦值),結合題意求解這個角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個角的余弦值,再求其正弦值,代入公式求面積,總之,結合圖形恰當選擇面積公式是解題的關鍵.18、(1)①單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;②詳見解析;(2).【解析】
(1)①求導可得,再分別求解與的解集,結合定義域分析函數(shù)的單調(diào)區(qū)間即可.②根據(jù)(1)中的結論,求出的表達式,再分與兩種情況,結合函數(shù)的單調(diào)性分析的范圍即可.(2)求導分析的單調(diào)性,再結合單調(diào)性,設去絕對值化簡可得,再構造函數(shù),,根據(jù)函數(shù)的單調(diào)性與恒成立問題可知,再換元表達求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;,或,若,因為,故,,由知在上單調(diào)遞增,,若由可得x1,因為,所以,由在上單調(diào)遞增,綜上.時,,在上單調(diào)遞減,不妨設由(1)在上單調(diào)遞減,由,可得,所以,令,,可得單調(diào)遞減,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.【點睛】本題主要考查了分類討論分析函數(shù)單調(diào)性的問題,同時也考查了利用導數(shù)求解函數(shù)不等式以及構造函數(shù)分析函數(shù)的最值解決恒成立的問題.需要根據(jù)題意結合定義域與單調(diào)性分析函數(shù)的取值范圍與最值等.屬于難題.19、(1)曲線的直角坐標方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標方程兩邊同乘以利用即可得曲線的直角坐標方程;(2)直線的參數(shù)方程代入圓的直角坐標方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達定理可得結果.【詳解】(1)由,得,所以曲線的直角坐標方程為,即,直線的普通方程為.(2)將直線的參數(shù)方程代入并化簡、整理,得.因為直線與曲線交于,兩點.所以,解得.由根與系數(shù)的關系,得,.因為點的直角坐標為,在直線上.所以,解得,此時滿足.且,故..【點睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應的參數(shù)可以把普通方程化為參數(shù)方程,利用關系式,等可以把極坐標方程與直角坐標方程互化,這類問題一般我們可以先把曲線方程化為直角坐標方程,用直角坐標方程解決相應問題.20、解:設特征向量為α=對應的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.21、(1),眾數(shù)為150;(2);(3)【解析】
(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個開學季內(nèi)市場需求量的眾數(shù)和平均數(shù);(2)由已知條件推導出當時,,當時,,由此能將表示為的函數(shù);(3)利用頻率分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年二級建造師繼教學習小結模版(2篇)
- 2025年企業(yè)辦公室文秘工作總結范文(二篇)
- 2025年鄉(xiāng)村企業(yè)職工勞動合同(2篇)
- 2025年中醫(yī)實習心得體會范文(2篇)
- 2025年儀器分析總結(五篇)
- 2025年二房東房屋出租合同范文(2篇)
- 2025年二年級班主任年終思想總結樣本(三篇)
- 2025年人事處的年終工作總結(四篇)
- 2025年中小學校長培訓心得體會樣本(3篇)
- 2025年中級職稱干部培訓學習心得體會樣本(2篇)
- 教體局校車安全管理培訓
- 導播理論知識培訓班課件
- 行車起重作業(yè)風險分析及管控措施
- 空氣能安裝合同
- 電廠檢修安全培訓課件
- 初二上冊的數(shù)學試卷
- 四大名繡課件-高一上學期中華傳統(tǒng)文化主題班會
- 大模型關鍵技術與應用
- 起重機械生產(chǎn)單位題庫質(zhì)量安全員
- 高中生物選擇性必修1試題
- 后顱窩腫瘤的護理
評論
0/150
提交評論