福建省泉州市晉江市泉州五中學(xué)橋南校區(qū)2024年中考數(shù)學(xué)押題卷含解析_第1頁
福建省泉州市晉江市泉州五中學(xué)橋南校區(qū)2024年中考數(shù)學(xué)押題卷含解析_第2頁
福建省泉州市晉江市泉州五中學(xué)橋南校區(qū)2024年中考數(shù)學(xué)押題卷含解析_第3頁
福建省泉州市晉江市泉州五中學(xué)橋南校區(qū)2024年中考數(shù)學(xué)押題卷含解析_第4頁
福建省泉州市晉江市泉州五中學(xué)橋南校區(qū)2024年中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省泉州市晉江市泉州五中學(xué)橋南校區(qū)2024年中考數(shù)學(xué)押題卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.32.如圖,在平面直角坐標(biāo)系中,位于第二象限,點(diǎn)的坐標(biāo)是,先把向右平移3個(gè)單位長(zhǎng)度得到,再把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)是()A. B. C. D.3.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)4.如圖,田亮同學(xué)用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長(zhǎng)比原樹葉的周長(zhǎng)要小,能正確解釋這一現(xiàn)象的數(shù)學(xué)知識(shí)是()A.垂線段最短 B.經(jīng)過一點(diǎn)有無數(shù)條直線C.兩點(diǎn)之間,線段最短 D.經(jīng)過兩點(diǎn),有且僅有一條直線5.下列圖形中,是正方體表面展開圖的是()A. B. C. D.6.已知線段AB=8cm,點(diǎn)C是直線AB上一點(diǎn),BC=2cm,若M是AB的中點(diǎn),N是BC的中點(diǎn),則線段MN的長(zhǎng)度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm7.如圖,點(diǎn)A、B、C、D在⊙O上,∠AOC=120°,點(diǎn)B是弧AC的中點(diǎn),則∠D的度數(shù)是()A.60° B.35° C.30.5° D.30°8.下面計(jì)算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a(chǎn)2?a5=a79.某校八(2)班6名女同學(xué)的體重(單位:kg)分別為35,36,38,40,42,42,則這組數(shù)據(jù)的中位數(shù)是()A.38 B.39 C.40 D.4210.已知a<1,點(diǎn)A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數(shù)圖象上的三點(diǎn),則下列結(jié)論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x1二、填空題(共7小題,每小題3分,滿分21分)11.圖中圓心角∠AOB=30°,弦CA∥OB,延長(zhǎng)CO與圓交于點(diǎn)D,則∠BOD=.12.分解因式:__________.13.在不透明的口袋中有若干個(gè)完全一樣的紅色小球,現(xiàn)放入10個(gè)僅顏色不同的白色小球,均勻混合后,有放回的隨機(jī)摸取30次,有10次摸到白色小球,據(jù)此估計(jì)該口袋中原有紅色小球個(gè)數(shù)為_____.14.如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點(diǎn),連接BO并延長(zhǎng)交函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接AC,若△ABC的面積為1.則k的值為_____.15.已知二次函數(shù)的圖像與軸交點(diǎn)的橫坐標(biāo)是和,且,則________.16.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.17.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.三、解答題(共7小題,滿分69分)18.(10分)先化簡(jiǎn),再求值:,其中,a、b滿足.19.(5分)如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.(1)求證:CD與⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.20.(8分)如圖,拋物線y=ax2+bx(a<0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=1.求拋物線的函數(shù)表達(dá)式.當(dāng)t為何值時(shí),矩形ABCD的周長(zhǎng)有最大值?最大值是多少?保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.21.(10分)關(guān)于的一元二次方程有實(shí)數(shù)根.求的取值范圍;如果是符合條件的最大整數(shù),且一元二次方程與方程有一個(gè)相同的根,求此時(shí)的值.22.(10分)山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:每千克核桃應(yīng)降價(jià)多少元?在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?23.(12分)閱讀與應(yīng)用:閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)?,所以,從而(?dāng)a=b時(shí)取等號(hào)).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知:,所以當(dāng)即時(shí),函數(shù)的最小值為.閱讀理解上述內(nèi)容,解答下列問題:?jiǎn)栴}1:已知一個(gè)矩形的面積為4,其中一邊長(zhǎng)為x,則另一邊長(zhǎng)為,周長(zhǎng)為,求當(dāng)x=__________時(shí),周長(zhǎng)的最小值為__________.問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時(shí),的最小值為__________.問題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.1.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))24.(14分)某景區(qū)在同一線路上順次有三個(gè)景點(diǎn)A,B,C,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙花20分鐘時(shí)間排隊(duì)后乘觀光車先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C.甲、乙兩人離景點(diǎn)A的路程s(米)關(guān)于時(shí)間t(分鐘)的函數(shù)圖象如圖所示.甲的速度是______米/分鐘;當(dāng)20≤t≤30時(shí),求乙離景點(diǎn)A的路程s與t的函數(shù)表達(dá)式;乙出發(fā)后多長(zhǎng)時(shí)間與甲在途中相遇?若當(dāng)甲到達(dá)景點(diǎn)C時(shí),乙與景點(diǎn)C的路程為360米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度是多少?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

直接利用提取公因式法以及冪的乘方運(yùn)算法則將原式變形進(jìn)而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點(diǎn)睛】此題主要考查了冪的乘方運(yùn)算,正確將原式變形是解題關(guān)鍵.2、D【解析】

根據(jù)要求畫出圖形,即可解決問題.【詳解】解:根據(jù)題意,作出圖形,如圖:觀察圖象可知:A2(4,2);故選:D.【點(diǎn)睛】本題考查平移變換,旋轉(zhuǎn)變換等知識(shí),解題的關(guān)鍵是正確畫出圖象,屬于中考常考題型.3、D【解析】

試題分析:方法一:∵△ABO和△A′B′O關(guān)于原點(diǎn)位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點(diǎn)A(―3,6)且相似比為,∴點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是(―3×,6×),∴A′(-1,2).∵點(diǎn)A′′和點(diǎn)A′(-1,2)關(guān)于原點(diǎn)O對(duì)稱,∴A′′(1,―2).故答案選D.考點(diǎn):位似變換.4、C【解析】

用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長(zhǎng)比原樹葉的周長(zhǎng)要小,∴線段AB的長(zhǎng)小于點(diǎn)A繞點(diǎn)C到B的長(zhǎng)度,∴能正確解釋這一現(xiàn)象的數(shù)學(xué)知識(shí)是兩點(diǎn)之間,線段最短,故選C.【點(diǎn)睛】根據(jù)“用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長(zhǎng)比原樹葉的周長(zhǎng)要小”得到線段AB的長(zhǎng)小于點(diǎn)A繞點(diǎn)C到B的長(zhǎng)度,從而確定答案.本題考查了線段的性質(zhì),能夠正確的理解題意是解答本題的關(guān)鍵,屬于基礎(chǔ)知識(shí),比較簡(jiǎn)單.5、C【解析】

利用正方體及其表面展開圖的特點(diǎn)解題.【詳解】解:A、B、D經(jīng)過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點(diǎn)睛】本題考查了正方體的展開圖,解題時(shí)牢記正方體無蓋展開圖的各種情形.6、B【解析】(1)如圖1,當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)B之間時(shí),∵點(diǎn)M是AB的中點(diǎn),點(diǎn)N是BC的中點(diǎn),AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),∵點(diǎn)M是AB的中點(diǎn),點(diǎn)N是BC的中點(diǎn),AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長(zhǎng)度為5cm或3cm.故選B.點(diǎn)睛:解本題時(shí),由于題目中告訴的是點(diǎn)C在直線AB上,因此根據(jù)題目中所告訴的AB和BC的大小關(guān)系要分點(diǎn)C在線段AB上和點(diǎn)C在線段AB的延長(zhǎng)線上兩種情況分析解答,不要忽略了其中任何一種.7、D【解析】

根據(jù)圓心角、弧、弦的關(guān)系定理得到∠AOB=∠AOC,再根據(jù)圓周角定理即可解答.【詳解】連接OB,∵點(diǎn)B是弧的中點(diǎn),∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點(diǎn)睛】此題考查了圓心角、弧、弦的關(guān)系定理,解題關(guān)鍵在于利用好圓周角定理.8、D【解析】

直接利用完全平方公式以及合并同類項(xiàng)法則、積的乘方運(yùn)算法則分別化簡(jiǎn)得出答案.【詳解】A.

(a+b)2=a2+b2+2ab,故此選項(xiàng)錯(cuò)誤;B.

3a+4a=7a,故此選項(xiàng)錯(cuò)誤;C.

(ab)3=a3b3,故此選項(xiàng)錯(cuò)誤;D.

a2a5=a7,正確。故選:D.【點(diǎn)睛】本題考查了冪的乘方與積的乘方,合并同類項(xiàng),同底數(shù)冪的乘法,完全平方公式,解題的關(guān)鍵是掌握它們的概念進(jìn)行求解.9、B【解析】

根據(jù)中位數(shù)的定義求解,把數(shù)據(jù)按大小排列,第3、4個(gè)數(shù)的平均數(shù)為中位數(shù).【詳解】解:由于共有6個(gè)數(shù)據(jù),

所以中位數(shù)為第3、4個(gè)數(shù)的平均數(shù),即中位數(shù)為=39,

故選:B.【點(diǎn)睛】本題主要考查了中位數(shù).要明確定義:將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,若這組數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則最中間的那個(gè)數(shù)叫做這組數(shù)據(jù)的中位數(shù);若這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則最中間兩個(gè)數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).10、B【解析】

根據(jù)的圖象上的三點(diǎn),把三點(diǎn)代入可以得到x1=﹣,x1=,x3=,在根據(jù)a的大小即可解題【詳解】解:∵點(diǎn)A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數(shù)圖象上的三點(diǎn),∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【點(diǎn)睛】此題主要考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于把三點(diǎn)代入,在根據(jù)a的大小來判斷二、填空題(共7小題,每小題3分,滿分21分)11、30°【解析】試題分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所對(duì)的圓周角和圓心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.12、a(a-4)2【解析】

首先提取公因式a,進(jìn)而利用完全平方公式分解因式得出即可.【詳解】故答案為:【點(diǎn)睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關(guān)鍵.分解一定要徹底.13、20【解析】

利用頻率估計(jì)概率,設(shè)原來紅球個(gè)數(shù)為x個(gè),根據(jù)摸取30次,有10次摸到白色小球結(jié)合概率公式可得關(guān)于x的方程,解方程即可得.【詳解】設(shè)原來紅球個(gè)數(shù)為x個(gè),則有=,解得,x=20,經(jīng)檢驗(yàn)x=20是原方程的根.故答案為20.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率和概率公式的應(yīng)用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關(guān)鍵.14、3【解析】

連接OA.根據(jù)反比例函數(shù)的對(duì)稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點(diǎn)D的坐標(biāo).設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=2,得出a-b=2

①.根據(jù)S△OAC=2,得出-a-b=2

②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設(shè)直線y=x+2與y軸交于點(diǎn)D,則D(0,2),設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2

①.過A點(diǎn)作AM⊥x軸于點(diǎn)M,過C點(diǎn)作CN⊥x軸于點(diǎn)N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2

②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積,待定系數(shù)法求函數(shù)的解析式等知識(shí),綜合性較強(qiáng),難度適中.根據(jù)反比例函數(shù)的對(duì)稱性得出OB=OC是解題的突破口.15、-12【解析】

令y=0,得方程,和即為方程的兩根,利用根與系數(shù)的關(guān)系求得和,利用完全平方式并結(jié)合即可求得k的值.【詳解】解:∵二次函數(shù)的圖像與軸交點(diǎn)的橫坐標(biāo)是和,令y=0,得方程,則和即為方程的兩根,∴,,∵,兩邊平方得:,∴,即,解得:,故答案為:.【點(diǎn)睛】本題考查了一元二次方程與二次函數(shù)的關(guān)系,函數(shù)與x軸的交點(diǎn)的橫坐標(biāo)就是方程的根,解題的關(guān)鍵是利用根與系數(shù)的關(guān)系,整體代入求解.16、【解析】分析:過點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得,;設(shè)AF=DF=x,則FG=,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設(shè)AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點(diǎn)睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識(shí)來解決問題.17、48°【解析】

連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計(jì)算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點(diǎn)睛:本題考查的是正多邊形與圓的有關(guān)計(jì)算,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、【解析】

先根據(jù)分式混合運(yùn)算順序和運(yùn)算法則化簡(jiǎn)原式,再解方程組求得a、b的值,繼而代入計(jì)算可得.【詳解】原式=,=,=,解方程組得,所以原式=.【點(diǎn)睛】本題主要考查分式的化簡(jiǎn)求值和解二元一次方程組,解題的關(guān)鍵是熟練掌握分式混合運(yùn)算順序和運(yùn)算法則.19、(1)證明見解析;(2)【解析】試題分析:(1)過點(diǎn)O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;

(2)連接OF,依據(jù)垂徑定理可知BE=EF=1,在Rt△OEF中,依據(jù)勾股定理可知求得OF=13,然后可得到AE的長(zhǎng),最后在Rt△ABE中,利用銳角三角函數(shù)的定義求解即可.試題解析:(1)證明:過點(diǎn)O作OG⊥DC,垂足為G.

∵AD∥BC,AE⊥BC于E,

∴OA⊥AD.

∴∠OAD=∠OGD=90°.

在△ADO和△GDO中,

∴△ADO≌△GDO.

∴OA=OG.

∴DC是⊙O的切線.

(2)如圖所示:連接OF.

∵OA⊥BC,

∴BE=EF=BF=1.在Rt△OEF中,OE=5,EF=1,∴OF=,∴AE=OA+OE=13+5=2.

∴tan∠ABC=.【點(diǎn)睛】本題主要考查的是切線的判定、垂徑定理、勾股定理的應(yīng)用、銳角三角函數(shù)的定義,掌握本題的輔助線的作法是解題的關(guān)鍵.20、(1);(2)當(dāng)t=1時(shí),矩形ABCD的周長(zhǎng)有最大值,最大值為;(3)拋物線向右平移的距離是1個(gè)單位.【解析】

(1)由點(diǎn)E的坐標(biāo)設(shè)拋物線的交點(diǎn)式,再把點(diǎn)D的坐標(biāo)(2,1)代入計(jì)算可得;

(2)由拋物線的對(duì)稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時(shí)AD=,根據(jù)矩形的周長(zhǎng)公式列出函數(shù)解析式,配方成頂點(diǎn)式即可得;

(3)由t=2得出點(diǎn)A、B、C、D及對(duì)角線交點(diǎn)P的坐標(biāo),由直線GH平分矩形的面積知直線GH必過點(diǎn)P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)是P知PQ是△OBD中位線,據(jù)此可得.【詳解】(1)設(shè)拋物線解析式為,當(dāng)時(shí),,點(diǎn)的坐標(biāo)為,將點(diǎn)坐標(biāo)代入解析式得,解得:,拋物線的函數(shù)表達(dá)式為;(2)由拋物線的對(duì)稱性得,,當(dāng)時(shí),,矩形的周長(zhǎng),,,,當(dāng)時(shí),矩形的周長(zhǎng)有最大值,最大值為;(3)如圖,當(dāng)時(shí),點(diǎn)、、、的坐標(biāo)分別為、、、,矩形對(duì)角線的交點(diǎn)的坐標(biāo)為,直線平分矩形的面積,點(diǎn)是和的中點(diǎn),,由平移知,是的中位線,,所以拋物線向右平移的距離是1個(gè)單位.【點(diǎn)睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及平移變換的性質(zhì)等知識(shí)點(diǎn).21、(1);(2)的值為.【解析】

(1)利用判別式的意義得到,然后解不等式即可;(2)利用(1)中的結(jié)論得到的最大整數(shù)為2,解方程解得,把和分別代入一元二次方程求出對(duì)應(yīng)的,同時(shí)滿足.【詳解】解:(1)根據(jù)題意得,解得;(2)的最大整數(shù)為2,方程變形為,解得,∵一元二次方程與方程有一個(gè)相同的根,∴當(dāng)時(shí),,解得;當(dāng)時(shí),,解得,而,∴的值為.【點(diǎn)睛】本題考查了根的判別式:一元二次方程的根與有如下關(guān)系:當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)時(shí),方程無實(shí)數(shù)根.22、(1)4元或6元;(2)九折.【解析】

解:(1)設(shè)每千克核桃應(yīng)降價(jià)x元.根據(jù)題意,得(60﹣x﹣40)(100+×20)=2240,化簡(jiǎn),得x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃應(yīng)降價(jià)4元或6元.(2)由(1)可知每千克核桃可降價(jià)4元或6元.∵要盡可能讓利于顧客,∴每千克核桃應(yīng)降價(jià)6元.此時(shí),售價(jià)為:60﹣6=54(元),.答:該店應(yīng)按原售價(jià)的九折出售.23、問題1:28問題2:38問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,依題意得:,因?yàn)閤>0,所以,當(dāng)即x=800時(shí),y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800人時(shí),該校每天生均投入最低,最低費(fèi)用是2元.【解析】試題分析:?jiǎn)栴}1:當(dāng)時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論