



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
圓內(nèi)接四邊形的性質(zhì)41.(2023?赤峰)如圖,圓內(nèi)接四邊形ABCD中,∠BCD=105°,連接OB,OC,OD,BD,∠BOC=2∠COD.則∠CBD的度數(shù)是()A.25° B.30° C.35° D.40°【答案】A【分析】利用圓內(nèi)接四邊形的性質(zhì)及圓周角定理求得∠BOD的度數(shù),再結(jié)合已知條件求得∠COD的度數(shù),然后利用圓周角定理求得∠CBD的度數(shù).【解答】解:∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠A+∠BCD=180°,∵∠BCD=105°,∴∠A=75°,∴∠BOD=2∠A=150°,∵∠BOC=2∠COD,∴∠BOD=3∠COD=150°,∴∠COD=50°,∴∠CBD=12∠故選:A.【點評】本題考查圓內(nèi)接四邊形性質(zhì)及圓周角定理,結(jié)合已知條件求得∠BOD的度數(shù)是解題的關(guān)鍵.圓內(nèi)接四邊形的性質(zhì)46.(2023?山西)如圖,四邊形ABCD內(nèi)接于⊙O,AC,BD為對角線,BD經(jīng)過圓心O.若∠BAC=40°,則∠DBC的度數(shù)為()A.40° B.50° C.60° D.70°【答案】B【分析】由圓周角定理可得∠BCD=90°,∠BDC=∠BAC=40°,再利用直角三角形的性質(zhì)可求解.【解答】解:∵BD經(jīng)過圓心O,∴∠BCD=90°,∵∠BDC=∠BAC=40°,∴∠DBC=90°﹣∠BDC=50°,故選:B.【點評】本題主要考查圓周角定理,直角三角形的性質(zhì),掌握圓周角定理是解題的關(guān)鍵.圓內(nèi)接四邊形的性質(zhì)40.(2023?紹興)如圖,四邊形ABCD內(nèi)接于圓O,若∠D=100°,則∠B的度數(shù)是80°.【答案】80°.【分析】由圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角互補(bǔ),即可得到答案.【解答】解:∵四邊形ABCD內(nèi)接于圓O,∴∠B+∠D=180°,∵∠D=100°,∴∠B=80°.故答案為:80°.【點評】本題考查圓內(nèi)接四邊形的性質(zhì),關(guān)鍵是掌握圓內(nèi)接四邊形的性質(zhì).圓內(nèi)接四邊形的性質(zhì)43.(2023?溫州)如圖,四邊形ABCD內(nèi)接于⊙O,BC∥AD,AC⊥BD.若∠AOD=120°,AD=3,則∠CAO的度數(shù)與BCA.10°,1 B.10°,2 C.15°,1 D.15°,2【答案】C【分析】由平行線的性質(zhì),圓周角定理,垂直的定義,推出∠AOB=∠COD=90°,∠CAD=∠BDA=45°,求出∠BOC=60°,得到△BOC是等邊三角形,得到BC=OB,由等腰三角形的性質(zhì)求出圓的半徑長是,求出∠OAD的度數(shù),即可得到BC的長,∠CAO的度數(shù).【解答】解:∵BC∥AD,∴∠DBC=∠ADB,∴AB=∴∠AOB=∠COD,∠CAD=∠BDA,∵DB⊥AC,∴∠AED=90°,∴∠CAD=∠BDA=45°,∴∠AOB=2∠ADB=90°,∠COD=2∠CAD=90°,∵∠AOD=120°,∴∠BOC=360°﹣90°﹣90°﹣120°=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OB,∵OA=OD,∠AOD=120°,∴∠OAD=∠ODA=30°,∴AD=3OA=∴OA=1,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故選:C.【點評】本題考查圓周角定理,平行線的性質(zhì),等邊三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年同學(xué)聚會的主題方案策劃
- 2025年幼兒園12月份工作方案
- 2025年生產(chǎn)員工工作方案
- 勞務(wù)協(xié)議【適用于退休返聘人員】
- 2025年電動吊桿控制臺項目可行性研究報告
- 2025年琉璃瓦花飾項目可行性研究報告
- 2025年玻璃鋼隔離墩項目可行性研究報告
- 2025年玫瑰花蕾提取物項目可行性研究報告
- 2025年煮沸消毒設(shè)備項目可行性研究報告
- 廈門軟件職業(yè)技術(shù)學(xué)院《專業(yè)表現(xiàn)技法》2023-2024學(xué)年第二學(xué)期期末試卷
- 提點合同模板
- 企業(yè)安全生產(chǎn)責(zé)任制管理制度模版(三篇)
- 新版GSP認(rèn)證標(biāo)準(zhǔn)
- 反詐宣傳民警在社區(qū)活動上的發(fā)言稿
- 2024年安全崗位競聘演講稿(4篇)
- 甘肅省2025屆高三高考診斷(一診)政治試卷(含答案解析)
- 2024年中國裝飾公司100強(qiáng)企業(yè)排名
- 品管圈PDCA案例-中醫(yī)醫(yī)院減少住院患者艾灸燙傷率醫(yī)院改善成果匯報
- 弦理探索-洞察分析
- 工務(wù)安全生產(chǎn)管理系統(tǒng)運(yùn)用
- 心衰病人的觀察與護(hù)理
評論
0/150
提交評論