山西省朔州市名校2024屆中考數(shù)學適應性模擬試題含解析_第1頁
山西省朔州市名校2024屆中考數(shù)學適應性模擬試題含解析_第2頁
山西省朔州市名校2024屆中考數(shù)學適應性模擬試題含解析_第3頁
山西省朔州市名校2024屆中考數(shù)學適應性模擬試題含解析_第4頁
山西省朔州市名校2024屆中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山西省朔州市名校2024屆中考數(shù)學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算的正確結(jié)果是()A. B.- C.1 D.﹣12.已知,代數(shù)式的值為()A.-11 B.-1 C.1 D.113.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.104.如果與互補,與互余,則與的關(guān)系是()A. B.C. D.以上都不對5.點P(4,﹣3)關(guān)于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限6.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.167.已知拋物線y=x2+3向左平移2個單位,那么平移后的拋物線表達式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+58.如圖是幾何體的俯視圖,所表示數(shù)字為該位置小正方體的個數(shù),則該幾何體的正視圖是()A. B. C. D.9.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.10.綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:每批粒數(shù)n100300400600100020003000發(fā)芽的粒數(shù)m9628238257094819042850發(fā)芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個推斷:①當n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率是0.955;②根據(jù)上表,估計綠豆發(fā)芽的概率是0.95;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③二、填空題(共7小題,每小題3分,滿分21分)11.化簡3m﹣2(m﹣n)的結(jié)果為_____.12.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.13.因式分解:9a3b﹣ab=_____.14.如果關(guān)于x的方程x2+kx+34k2-3k+15.中國古代的數(shù)學專著《九章算術(shù)》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據(jù)題意,可得方程組為___.16.若一個圓錐的側(cè)面展開圖是一個半徑為6cm,圓心角為120°的扇形,則該圓錐的側(cè)面面積為______cm(結(jié)果保留π).17.已知二次函數(shù)的部分圖象如圖所示,則______;當x______時,y隨x的增大而減小.三、解答題(共7小題,滿分69分)18.(10分)龐亮和李強相約周六去登山,龐亮從北坡山腳C處出發(fā),以24米/分鐘的速度攀登,同時,李強從南坡山腳B處出發(fā).如圖,已知小山北坡的坡度,山坡長為240米,南坡的坡角是45°.問李強以什么速度攀登才能和龐亮同時到達山頂A?(將山路AB、AC看成線段,結(jié)果保留根號)19.(5分)為了解某校學生的課余興趣愛好情況,某調(diào)查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計圖:根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學生人數(shù)是多少人;(2)補全條形統(tǒng)計圖;(3)若該校共有2000名學生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干?,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.20.(8分)某初級中學對畢業(yè)班學生三年來參加市級以上各項活動獲獎情況進行統(tǒng)計,七年級時有48人次獲獎,之后逐年增加,到九年級畢業(yè)時累計共有183人次獲獎,求這兩年中獲獎人次的平均年增長率.21.(10分)如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關(guān)于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最?。咳绻嬖?,求出點的坐標;如果不存在,說明理由.22.(10分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:(1)a=%,并補全條形圖.(2)在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?(3)如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?23.(12分)2018年4月份,鄭州市教育局針對鄭州市中小學參與課外輔導進行調(diào)查,根據(jù)學生參與課外輔導科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據(jù)調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結(jié)合圖中所給信息解答下列問題:(1)本次被調(diào)查的學員共有人;在被調(diào)查者中參加“3科”課外輔導的有人.(2)將條形統(tǒng)計圖補充完整;(3)已知鄭州市中小學約有24萬人,那么請你估計一下參與輔導科目不多于2科的學生大約有多少人.24.(14分)先化簡,再求值:,其中x=-1.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)有理數(shù)加法的運算方法,求出算式的正確結(jié)果是多少即可.【詳解】原式故選:D.【點睛】此題主要考查了有理數(shù)的加法的運算方法,要熟練掌握,解答此題的關(guān)鍵是要明確:①同號相加,取相同符號,并把絕對值相加.②絕對值不等的異號加減,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值.互為相反數(shù)的兩個數(shù)相加得1.③一個數(shù)同1相加,仍得這個數(shù).2、D【解析】

根據(jù)整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數(shù)式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關(guān)鍵在于利用整式的運算法則進行化簡求得代數(shù)式的值3、C【解析】

由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【點睛】本題主要考查切線的性質(zhì),利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關(guān)鍵.4、C【解析】

根據(jù)∠1與∠2互補,∠2與∠1互余,先把∠1、∠1都用∠2來表示,再進行運算.【詳解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故選C.【點睛】此題主要記住互為余角的兩個角的和為90°,互為補角的兩個角的和為180度.5、C【解析】

由題意得點P的坐標為(﹣4,3),根據(jù)象限內(nèi)點的符號特點可得點P1的所在象限.【詳解】∵設P(4,﹣3)關(guān)于原點的對稱點是點P1,∴點P1的坐標為(﹣4,3),∴點P1在第二象限.故選C【點睛】本題主要考查了兩點關(guān)于原點對稱,這兩點的橫縱坐標均互為相反數(shù);符號為(﹣,+)的點在第二象限.6、B【解析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大?。虎诮?jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.7、A【解析】

結(jié)合向左平移的法則,即可得到答案.【詳解】解:將拋物線y=x2+3向左平移2個單位可得y=(x+2)2+3,故選A.【點睛】此類題目主要考查二次函數(shù)圖象的平移規(guī)律,解題的關(guān)鍵是要搞清已知函數(shù)解析式確定平移后的函數(shù)解析式,還是已知平移后的解析式求原函數(shù)解析式,然后根據(jù)圖象平移規(guī)律“左加右減、上加下減“進行解答.8、B【解析】

根據(jù)俯視圖中每列正方形的個數(shù),再畫出從正面看得到的圖形即可.【詳解】解:主視圖,如圖所示:.故選B.【點睛】本題考查由三視圖判斷幾何體;簡單組合體的三視圖.用到的知識點為:主視圖是從物體的正面看得到的圖形;看到的正方體的個數(shù)為該方向最多的正方體的個數(shù).9、C【解析】

由正方形的性質(zhì)知DG=CG-CD=2、AD∥GF,據(jù)此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,

∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,

∴DG=CG-CD=2,AD∥GF,

則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練掌握正方形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.10、D【解析】

①利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率,n=400,數(shù)值較小,不能近似的看為概率,①錯誤;②利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率,可得②正確;③用4000乘以綠豆發(fā)芽的的概率即可求得綠豆發(fā)芽的粒數(shù),③正確.【詳解】①當n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率大約是0.955,此推斷錯誤;②根據(jù)上表當每批粒數(shù)足夠大時,頻率逐漸接近于0.950,所以估計綠豆發(fā)芽的概率是0.95,此推斷正確;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為4000×0.950=3800粒,此結(jié)論正確.故選D.【點睛】本題考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.二、填空題(共7小題,每小題3分,滿分21分)11、m+2n【解析】分析:先去括號,再合并同類項即可得.詳解:原式=3m-2m+2n=m+2n,故答案為:m+2n.點睛:本題主要考查整式的加減,解題的關(guān)鍵是掌握去括號與合并同類項的法則.12、1-1.【解析】

將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過勾股定理找出方程是解題的關(guān)鍵.13、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.14、-【解析】

由方程有兩個實數(shù)根,得到根的判別式的值大于等于0,列出關(guān)于k的不等式,利用非負數(shù)的性質(zhì)得到k的值,確定出方程,求出方程的解,代入所求式子中計算即可求出值.【詳解】∵方程x2+kx+34∴b2-4ac=k2-4(34k2-3k+92)=-2k2+12k-18=-2(k-3)∴k=3,代入方程得:x2+3x+94=(x+32)解得:x1=x2=-32則x12017x故答案為-23【點睛】此題考查了根的判別式,非負數(shù)的性質(zhì),以及配方法的應用,求出k的值是本題的突破點.15、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.16、12π【解析】根據(jù)圓錐的側(cè)面展開圖是扇形可得,,∴該圓錐的側(cè)面面積為:12π,故答案為12π.17、3,>1【解析】

根據(jù)函數(shù)圖象與x軸的交點,可求出c的值,根據(jù)圖象可判斷函數(shù)的增減性.【詳解】解:因為二次函數(shù)的圖象過點.

所以,

解得.

由圖象可知:時,y隨x的增大而減小.

故答案為(1).3,(2).>1【點睛】此題考查二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合法是解決函數(shù)問題經(jīng)常采用的一種方法,關(guān)鍵是要找出圖象與函數(shù)解析式之間的聯(lián)系.三、解答題(共7小題,滿分69分)18、李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A【解析】過點A作AD⊥BC于點D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分鐘)答:李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A19、(1)本次抽樣調(diào)查中的學生人數(shù)為100人;(2)補全條形統(tǒng)計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數(shù)為800人;(4).【解析】

(1)用選“閱讀”的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);(2)先計算出選“舞蹈”的人數(shù),再計算出選“打球”的人數(shù),然后補全條形統(tǒng)計圖;(3)用2000乘以樣本中選“打球”的人數(shù)所占的百分比可估計該校課余興趣愛好為“打球”的學生人數(shù);(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出選到一男一女的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調(diào)查中的學生人數(shù)為100人;(2)選”舞蹈”的人數(shù)為100×10%=10(人),選“打球”的人數(shù)為100﹣30﹣10﹣20=40(人),補全條形統(tǒng)計圖為:(3)2000×=800,所以估計該校課余興趣愛好為“打球”的學生人數(shù)為800人;(4)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中選到一男一女的結(jié)果數(shù)為8,所以選到一男一女的概率=.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,列表法與樹狀圖法求概率,讀懂統(tǒng)計圖,從中找到有用的信息是解題的關(guān)鍵.本題中還用到了知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、25%【解析】

首先設這兩年中獲獎人次的平均年增長率為x,則可得八年級的獲獎人數(shù)為48(1+x),九年級的獲獎人數(shù)為48(1+x)2;故根據(jù)題意可得48(1+x)2=183,即可求得x的值,即可求解本題.【詳解】設這兩年中獲獎人次的平均年增長率為x,根據(jù)題意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合題意,舍去).答:這兩年中獲獎人次的年平均年增長率為25%21、(1),;(2)點的坐標為;(3)點的坐標為和【解析】

(1)根據(jù)二次函數(shù)的對稱軸公式,拋物線上的點代入,即可;(2)先求F的對稱點,代入直線BE,即可;(3)構(gòu)造新的二次函數(shù),利用其性質(zhì)求極值.【詳解】解:(1)軸,,拋物線對稱軸為直線點的坐標為解得或(舍去),(2)設點的坐標為對稱軸為直線點關(guān)于直線的對稱點的坐標為.直線經(jīng)過點利用待定系數(shù)法可得直線的表達式為.因為點在上,即點的坐標為(3)存在點滿足題意.設點坐標為,則作垂足為①點在直線的左側(cè)時,點的坐標為點的坐標為點的坐標為在中,時,取最小值.此時點的坐標為②點在直線的右側(cè)時,點的坐標為同理,時,取最小值.此時點的坐標為綜上所述:滿足題意得點的坐標為和考點:二次函數(shù)的綜合運用.22、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動時間不少于1天的學生人數(shù)大約有5400人.【解析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總?cè)藬?shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案.【詳解】解:(1)扇形統(tǒng)計圖中a=1﹣5%﹣40%﹣20%﹣25%=10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論