版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省淮北市杜集區(qū)2024年中考數(shù)學(xué)最后一模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.關(guān)于反比例函數(shù)y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上2.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.3.一個圓的內(nèi)接正六邊形的邊長為2,則該圓的內(nèi)接正方形的邊長為()A. B.2 C.2 D.44.“a是實數(shù),|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機事件5.在平面直角坐標(biāo)系中,點A的坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(3,0),在y軸的正半軸上取一點C,使A、B、C三點確定一個圓,且使AB為圓的直徑,則點C的坐標(biāo)是()A.(0,) B.(,0) C.(0,2) D.(2,0)6.吉林市面積約為27100平方公里,將27100這個數(shù)用科學(xué)記數(shù)法表示為()A.27.1×102B.2.71×103C.2.71×104D.0.271×1057.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.下列圖形中,是正方體表面展開圖的是()A. B. C. D.9.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°10.已知一次函數(shù)y=kx+b的大致圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+kb+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.沒有實數(shù)根C.有兩個相等的實數(shù)根 D.有一個根是011.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.12.某春季田徑運動會上,參加男子跳高的15名運動員的成績?nèi)缦卤硭荆撼煽內(nèi)藬?shù)這些運動員跳高成績的中位數(shù)是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.14.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).15.如圖,點A、B、C在圓O上,弦AC與半徑OB互相平分,那么∠AOC度數(shù)為_____度.16.已知扇形的圓心角為120°,弧長為6π,則扇形的面積是_____.17.小明統(tǒng)計了家里3月份的電話通話清單,按通話時間畫出頻數(shù)分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數(shù)的頻率是_____.18.若一個多邊形的內(nèi)角和為1080°,則這個多邊形的邊數(shù)為__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的長.20.(6分)先化簡代數(shù)式:,再代入一個你喜歡的數(shù)求值.21.(6分)在等邊△ABC外側(cè)作直線AM,點C關(guān)于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數(shù);(2)如圖2,當(dāng)∠MAC=30°時,判斷線段BE與DE之間的數(shù)量關(guān)系,并加以證明;(3)若0°<∠MAC<120°,當(dāng)線段DE=2BE時,直接寫出∠MAC的度數(shù).22.(8分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內(nèi)為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?23.(8分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應(yīng)邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應(yīng)邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.當(dāng)β=45°時,若△APQ是“中邊三角形”,試求的值.24.(10分)如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))25.(10分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。26.(12分)如圖,已知函數(shù)(x>0)的圖象經(jīng)過點A、B,點B的坐標(biāo)為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,與x軸的負半軸交于點E.若AC=OD,求a、b的值;若BC∥AE,求BC的長.27.(12分)甲、乙兩個人做游戲:在一個不透明的口袋中裝有1張相同的紙牌,它們分別標(biāo)有數(shù)字1,2,3,1.從中隨機摸出一張紙牌然后放回,再隨機摸出一張紙牌,若兩次摸出的紙牌上數(shù)字之和是3的倍數(shù),則甲勝;否則乙勝.這個游戲?qū)﹄p方公平嗎?請列表格或畫樹狀圖說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)反比例函數(shù)y=的圖象上點的坐標(biāo)特征,以及該函數(shù)的圖象的性質(zhì)進行分析、解答.【詳解】A.反比例函數(shù)的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內(nèi),y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數(shù)的性質(zhì).注意:反比例函數(shù)的增減性只指在同一象限內(nèi).2、C【解析】
先利用三角函數(shù)求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結(jié)論;【詳解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如圖2,過點P作PE⊥BC于E,
在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質(zhì),三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關(guān)鍵.3、B【解析】
圓內(nèi)接正六邊形的邊長是1,即圓的半徑是1,則圓的內(nèi)接正方形的對角線長是2,進而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對角線長為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長是1.故選B.【點睛】本題考查正多邊形與圓,關(guān)鍵是利用知識點:圓內(nèi)接正六邊形的邊長和圓的半徑相等;圓的內(nèi)接正方形的對角線長為圓的直徑解答.4、A【解析】根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,由a是實數(shù),得|a|≥0恒成立,因此,這一事件是必然事件.故選A.5、A【解析】
直接根據(jù)△AOC∽△COB得出OC2=OA?OB,即可求出OC的長,即可得出C點坐標(biāo).【詳解】如圖,連結(jié)AC,CB.
依△AOC∽△COB的結(jié)論可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或?(負數(shù)舍去),故C點的坐標(biāo)為(0,).故答案選:A.【點睛】本題考查了坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是熟練的掌握坐標(biāo)與圖形的性質(zhì).6、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】將27100用科學(xué)記數(shù)法表示為:.2.71×104.故選:C.【點睛】本題考查科學(xué)記數(shù)法—表示較大的數(shù)。7、A【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據(jù)AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.8、C【解析】
利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經(jīng)過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.9、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉(zhuǎn)的性質(zhì)可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉(zhuǎn)的性質(zhì).10、A【解析】
判斷根的情況,只要看根的判別式△=b2?4ac的值的符號就可以了.【詳解】∵一次函數(shù)y=kx+b的圖像經(jīng)過第一、三、四象限∴k>0,b<0∴△=b2?4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有兩個不等的實數(shù)根,故選A.【點睛】根的判別式11、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.12、C【解析】
根據(jù)中位數(shù)的定義解答即可.【詳解】解:在這15個數(shù)中,處于中間位置的第8個數(shù)是1.1,所以中位數(shù)是1.1.
所以這些運動員跳高成績的中位數(shù)是1.1.
故選:C.【點睛】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣1<r<.【解析】
首先根據(jù)題意求得對角線AC的長,設(shè)圓A的半徑為R,根據(jù)點B在圓A外,得出0<R<1,則-1<-R<0,再根據(jù)圓A與圓C外切可得R+r=,利用不等式的性質(zhì)即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,
∴AC=,
設(shè)圓A的半徑為R,
∵點B在圓A外,
∴0<R<1,
∴-1<-R<0,
∴-1<-R<.
∵以A、C為圓心的兩圓外切,
∴兩圓的半徑的和為,
∴R+r=,r=-R,
∴-1<r<.
故答案為:-1<r<.【點睛】本題考查了圓與圓的位置關(guān)系,點與圓的位置關(guān)系,正方形的性質(zhì),勾股定理,不等式的性質(zhì).掌握位置關(guān)系與數(shù)量之間的關(guān)系是解題的關(guān)鍵.14、(1),,(-1,0);(2)存在P的坐標(biāo)是或;(1)當(dāng)EF最短時,點P的坐標(biāo)是:(,)或(,)【解析】
(1)將點A和點C的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標(biāo);(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標(biāo)即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標(biāo),從而得到點P的縱坐標(biāo),然后由拋物線的解析式可求得點P的坐標(biāo).【詳解】解:(1)∵將點A和點C的坐標(biāo)代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標(biāo)為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當(dāng)∠ACP1=90°.由(1)可知點A的坐標(biāo)為(1,0).設(shè)AC的解析式為y=kx﹣1.∵將點A的坐標(biāo)代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標(biāo)為(1,﹣4).②當(dāng)∠P2AC=90°時.設(shè)AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標(biāo)為(﹣2,5).綜上所述,P的坐標(biāo)是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當(dāng)OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標(biāo)是,∴,解得:x=,∴當(dāng)EF最短時,點P的坐標(biāo)是:(,)或(,).15、1.【解析】
首先根據(jù)垂徑定理得到OA=AB,結(jié)合等邊三角形的性質(zhì)即可求出∠AOC的度數(shù).【詳解】解:∵弦AC與半徑OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等邊三角形,∴∠AOB=60°,∴∠AOC=1°,故答案為1.【點睛】本題主要考查了垂徑定理的知識,解題的關(guān)鍵是證明△OAB是等邊三角形,此題難度不大.16、27π【解析】試題分析:設(shè)扇形的半徑為r.則,解得r=9,∴扇形的面積==27π.故答案為27π.考點:扇形面積的計算.17、0.7【解析】
用通話時間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.18、1【解析】
根據(jù)多邊形內(nèi)角和定理:(n﹣2)?110(n≥3)可得方程110(x﹣2)=1010,再解方程即可.【詳解】解:設(shè)多邊形邊數(shù)有x條,由題意得:110(x﹣2)=1010,解得:x=1,故答案為:1.【點睛】此題主要考查了多邊形內(nèi)角和定理,關(guān)鍵是熟練掌握計算公式:(n﹣2)?110(n≥3).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、8+6.【解析】
如圖作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解決問題;【詳解】解:如圖作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tanA==,∴AH=8,∴AC==10,【點睛】本題考查解直角三角形,銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.20、【解析】
先根據(jù)分式的運算法則進行化簡,再代入使分式有意義的值計算.【詳解】解:原式.使原分式有意義的值可取2,當(dāng)時,原式.【點睛】考核知識點:分式的化簡求值.掌握分式的運算法則是關(guān)鍵.21、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】
(1)根據(jù)軸對稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內(nèi)角和得出x+y即可得出結(jié)論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結(jié)論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結(jié)論.【詳解】(1)補全圖形如圖1所示,根據(jù)軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質(zhì),軸對稱的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,作出圖形是解本題的關(guān)鍵.22、(1)不會穿過森林保護區(qū).理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區(qū),也就是求C到MN的距離.要構(gòu)造直角三角形,再解直角三角形;(2)根據(jù)題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設(shè)CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區(qū).(2)設(shè)原計劃完成這項工程需要y天,則實際完成工程需要y-5根據(jù)題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.23、tanA=;綜上所述,當(dāng)β=45°時,若△APQ是“中邊三角形”,的值為或.【解析】
(1)由AC和BD是“對應(yīng)邊”,可得AC=BD,設(shè)AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當(dāng)點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,可得AC是QP的垂直平分線.可求得△AEF∽△CEP,=,分兩種情況:當(dāng)?shù)走匬Q與它的中線AE相等,即AE=PQ時,==,∴=;當(dāng)腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【詳解】解:[理解]∵AC和BD是“對應(yīng)邊”,∴AC=BD,設(shè)AC=2x,則CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,當(dāng)點P在AB上時,△APQ是等腰直角三角形,不可能是“中邊三角形”,如圖2,當(dāng)點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分線,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分兩種情況:當(dāng)?shù)走匬Q與它的中線AE相等,即AE=PQ時,==,∴=;當(dāng)腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,如圖3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,綜上所述,當(dāng)β=45°時,若△APQ是“中邊三角形”,的值為或.【點睛】本題是一道相似形綜合運用的試題,考查了相似三角形的判定及性質(zhì)的運用,勾股定理的運用,等腰直角三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,銳角三角形函數(shù)值的運用,解答時靈活運用三角函數(shù)值建立方程求解是解答的關(guān)鍵.24、此時輪船所在的B處與燈塔P的距離是98海里.【解析】【分析】過點P作PC⊥AB,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB的長即可.【詳解】作PC⊥AB于C點,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=,∴PC=PA?cos∠APC=40(海里),在Rt△PCB中,cos∠BPC=,∴PB==40≈98(海里),答:此時輪船所在的B處與燈塔P的距離是98海里.【點睛】本題考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025安徽建筑安全員-B證考試題庫附答案
- 貴州財經(jīng)職業(yè)學(xué)院《材料與施工工藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽幼兒師范高等??茖W(xué)?!豆芾韺W(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年上海市建筑安全員考試題庫及答案
- 2025年河南省建筑安全員考試題庫附答案
- 貴陽信息科技學(xué)院《薪酬與福利》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《食品試驗設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽學(xué)院《物理污染控制工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025云南省建筑安全員C證考試題庫
- 廣州新華學(xué)院《音樂劇演唱(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 南京郵電大學(xué)通達學(xué)院學(xué)生成績復(fù)核申請表
- GIS設(shè)備帶電補氣作業(yè)指導(dǎo)書QXL2015
- 《怪老頭兒》閱讀測試及答案
- 螺栓對應(yīng)重量表
- 造船廠全套作業(yè)指導(dǎo)書
- 施工現(xiàn)場消防安全操作規(guī)程
- A4標(biāo)簽打印模板
- (完整版)工程項目管理組織機構(gòu)
- 工程質(zhì)量檢測內(nèi)容包括哪些?
- 資格審查表范本
- 加工工藝規(guī)范
評論
0/150
提交評論