




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1/84
Abstract
Massiveaccesstechnologyreferstothetechnologiesdevelopedtoaddressthechallengeofaccommodatingextensiveconnectivity.6Gsetshigherdemandsforconnectiondensity,specificallytargetingscenarioswithmassiveconnections.Theenvisionedconnectiondensityfor6Gistensofmillionsofterminalspersquarekilometer.6GcanbringaboutafullydigitalsocietybyintegratingInternetofEverything(IoE),allowingindividualstoengageinnatural,inspiring,andpervasiveinteractionswiththeirsurroundings.Eachindividualisanticipatedtoactivatetenstohundredsofterminalsconnectedtothe6Gnetwork,withtheinteractioncycleformachine-typeterminalsexpectedtodecreasefrom1dayor2hoursin5Gtomereseconds.Inthecontextof6G,thereareincreaseddemandsforlowlatency,particularlyforthesporadictransmissionofsmallpacketsbymachine-typeterminals.ThisnecessitatesafurtherreductioninthedelayfrominitialaccesstoestablishingaRadioResourceControl(RRC)connection,
aimingtoachievesimplifiedaccessprocedures.
6GadvancestheMassiveMachineTypeCommunications(mMTC)scenariobyintroducingtheMassiveCommunicationscenario,whichinvolvesapotentiallyenormousnumberofaccessterminals,reachinguptotensofmillionspersquarekilometer.Additionally,inthecontextof6G,theImmersiveCommunicationandHyperReliableandLow-LatencyCommunication(HRLLC)scenariosstemmingfromEnhancedMobileBroadband(eMBB)andUltra-ReliableLow-LatencyCommunications(URLLC)scenariosbringforthincreaseddemandsforindicatorssuchasconnectiondensityandlatency.Tosatisfythesedemands,
extensiveresearchintomassiveaccesstechnologyisessential.
Thiswhitepaperaimstolayouttheframeworkofmassiveaccesstechnology,investigateitsapplicationscenariosanddemands,pinpointandillustratethetechnicalproblemsthatneedtobefixed,offerapathforwardtosolvetheseproblems,andsuggestspecifictechnicalfixes.Firstly,itexaminesthemanyapplicationsofmassiveaccesstechnologyandoutlinestherequirementsforindicatorslikeconnectiondensity,latency,datatransmissionfrequency,anddatapacketsizeineachapplication.Itthenexaminesthe
requirementsformassiveaccesstechnology,includingenhancingconnectiondensity,
2/84
decreasingcommunicationlatency,andoptimizingcommunicationprocesses,inconjunctionwiththeparticularrequirementsofusecases.Itthenturnstostudythekeytechnologiesforenablingmassiveaccess,explorestheindustry'sprevailingtechnicalapproachofUnsourcedMultipleAccess(UMA),andsuggestsUncoordinatedRandomAccessandTransmission(URAT)technology,efficientconnectionlesstransmissiontechnology,sparseInterleaveDivisionMultipleAccess(IDMA)forUMA,andmulti-userencodinganddecodingschemesbasedonOn-OffDivisionMultipleAccess(ODMA).Basedonthis,itrefinesthedesignschemesfortransmittersandreceiversandpresentsresourcehopping,patterndivisionrandomaccess(PDRA),andVirtualUserSplittingasthefoundationformultipleaccessschemes;iterativereceiversbasedonSparsificationTransformation;capacity-optimizedandlow-complexityiterativereceivers;andmulti-userencodingschemes.Finally,itintegratesandcategorizestheproposedkeytechnologies,refiningthemtocreateatechnicalroadmap
forenablingmassiveaccess.
3/84
Contents
1.Introduction(CICTMobile)
4
2.ApplicationScenariosofMassiveAccessTechnology(CICTMobile,ChinaUnicom)
7
3.ImportantUseCases
1
0
3.1ToCDigitalTwinWorld(CICTMobile)
1
0
3.2CriticalConnection-IntensiveIoV(ZTE,CICTMobile)
1
2
3.3Ultra-Low-PowerIoT(vivo)
1
4
4.BasicRequirements(CICTMobile)
1
7
5.CommunicationProcessofMassiveConnections(CICTMobile,vivo)
1
9
6.KeyTechnologiesforEnablingMassiveAccess
2
4
6.1UMASchemes
2
5
6.1.1URAT(CICTMobile)
2
5
6.1.2EfficientConnectionlessTransmission(ZTE)
2
7
6.1.3Multi-UserEncodingandDecodingSchemesBasedonODMA(XDU)
4
2
6.1.4SparseIDMAforUMA(ChinaMobile)
4
5
6.2TransmitterDesignSchemes
5
1
6.2.1MultipleAccessSchemeBasedonVirtualUserSplitting(DOCOMO)
5
1
6.2.2MultipleAccessSchemeBasedonResourceHopping(BJTU)
5
5
6.2.3PDRA(USTB)
5
9
6.3ReceiverDesignSchemes
6
2
6.3.1IterativeReceiverBasedonSparsificationTransformation(USTB)
6
2
6.3.2Capacity-OptimizedandLow-ComplexityIterativeReceiverandMulti-UserEncoding
Scheme(XDU,ZJU)
6
6
7.TechnicalRoadmap(CICTMobile)
7
2
8.ConclusionandOutlook(CICTMobile)
7
7
References
7
9
ContributingUnit
8
2
AbbreviationsandAcronyms
8
3
4/84
1.Introduction(CICTMobile)
AsemergingtechnologieslikeIoTandAIrapidlyadvance,thedemandforcommunicationtechnologiesisalsoontherise.Thearrivalof5Gtechnologyhasgivenpeopleaccesstofaster,morestable,andmorereliablecommunicationservices.However,asthenumberofIoTdevicescontinuestorise,accommodatingthemassiveinfluxofdeviceshasemergedasapivotalchallengeintoday'scommunicationlandscape.Traditionalcommunicationtechnologiesarenolongercapableofmeetingtheaccessdemandsimposedbythisvastvolumeofdevices.Therefore,investigatinganddevelopingmassiveaccesstechnologyhasemergedasacrucialfocalpointintheeraof6G.
Presently,numerousstandardizationorganizationsareactivelyengagedin6Gresearchandhavemadesubstantialadvancementsinnovelmultipleaccesstechnologies.Forexample,ITUhasexaminedanapplication-orienteddynamicaccessschemethat,withinanoverarchingframework,employsdiversemultipleaccessschemestailoredtospecificapplicationscenarios.Thisfacilitatesthepotentialconvergenceofdifferentmultipleaccessschemesandsupportsthestandardizedadvancementofnewmultipleaccesstechnologies.TheIMT2030(6G)PromotionGrouphasreachedaconsensusontechnicalconcepts,researchprogress,challenges,andresearchdirections.Thescopeofresearchencompassesfundamentaltransmissionmethodsatthetransmittingendandthesignalprocessingprocessatthereceivingend,providingaguidingframeworkforfutureresearchonnewmultipleaccesstechnologies.Thisfacilitatestheresolutionofoutstandingissuesandtheattainmentofsignificantbreakthroughs.InNovember2022,acrucialtechnicalresearchreportwasissued,introducingthepotentialofmassiveaccesstechnologywithoutuseridentificationbasedonNon-OrthogonalMultipleAccess(NOMA)togreatlyenhanceterminalconnectiondensity.Thisadvancementoffersrobustsupportfor6Gscenariossuchaslowpowerconsumptionandultra-large-scaleconnectivityandservesasthegroundworkforthoroughexplorationintophysicallayerairinterfacetechnology.FuTUREForumissuedtheWhitePaperon6GVisionandTechnologyTrends[1]in2020andtheWhitePaperontheEvolvedRandomAccessandMultipleAccessTransmissionTechnologies[2]in2022.Thesedocumentscovergrant-freetechnology,whichdoesnotnecessitatefullnetworkcoordination,andalsointroduceadesignapproachforintegratingrandomaccessandmultipleaccesstransmissiontechnologies.Inlarge-scaleconnectionscenarios,6GFlagshipemphasizesthesignificanceofNOMAasakeytechnology.Ithighlightstheneedtoaddresschallengesassociatedwithuseractivitydetectionanddatadecoding,whilealsoproposingresearchonNOMAtechnologythatoperateswithoutthenecessityforfullcoordination.
Meanwhile,therehavebeensignificantadvancementsintheacademicfieldofNOMAtechnology,leadingtotheintroductionofmassiveaccesstechnology[3].Allterminalsencodeinformationsequencesusingthesamecodebook,andthecodedbitsarethentransmittedoversharedresourcesusingSlottedALOHAaftermodulation.ItsprimarycharacteristicisthelackofnecessitytoallocateterminalIDsfortransmission,leadingtoitsdesignationasunsourcedoruncoordinatedmultipleaccess,whichhasemergedasaprominentresearchfocusinacademiccircles.Recently,academicresearchhasextensivelyexplorednovelmultipleaccesstechnologiesfor6G.ThereisawidespreadconsensusthatmMTCrepresentsapivotal
5/84
scenariofor6G,requiringenhancedperformanceindicatorsbeyondthoseof5G.Consequently,theintroductionofinnovativemultipleaccesstechnologiesbecomesessentialtotackletheensuingchallenges.Intacklingsignificantchallengessuchaspilot/preambledesign,channelestimation,andmulti-useractivitydetection,manystudieshaveincorporatedtechnologieslikecompressedsensing,multi-userencoding,anddeeplearningtoproposesolutionssuchasUnsourcedRandomAccess(URA)andUMA.ThecoreconceptofURAliesinitsabilitytoenableconcurrentaccessanddatatransmissionwithoutrequiringcoordinatedschedulingoraseparateaccessprocess,thussimplifyingtheaccessprotocolandreducingsignalingoverhead.Widelyrecognizedastheprevailingmultipleaccessschemein6Gacademicresearch,itformsthebasisforthemajorityofmultipleaccessinvestigations.TheURAschemecurrentlyproposedinacademiccirclescanbeprimarilycategorizedintotwotypes.Onetypeinvolvestheuseofconcatenatedinnerandoutercodestotransmitpilotsanddataconcurrently,therebyintegratingtheaccessanddatatransmissionprocesses.Theothertypeemphasizesreducingthecouplingbetweeninnerandoutercodes.Theconcatenationofinnerandoutercodesoftennecessitatesadditionalredundantinformation,leadingtoadecreaseinspectralefficiency.Therefore,thisschemeprimarilyreliesonspecificcorrelatedinformation,suchasspatialandchannelcorrelations,toeliminateconnectioncoding.
Thiswhitepaperaimstoexploretheresearchanddevelopmentofmassiveaccesstechnologyinthe6Gera.Itseekstoestablishacomprehensiveframeworkforthistechnology,encompassingapplicationscenarios,technicalrequirements,keychallenges,viabletechnicalroadmaps,andseveralpivotaltechnologies.Ultimately,itaimstoprovidestrongsupportfortheadvancementof6Gtechnology.Chapter2outlinesthetwoprimaryapplicationscenariosofmassiveaccesstechnology,tailoredtovaryingtrafficmodelandperformanceindicators.Chapter3detailstheimportantusecasesofmassiveaccesstechnologyin6G,includingtheToCdigitaltwinworld,thecriticalconnection-intensiveIoV(InternetofVehicles),andultra-low-powerIoT(InternetofThings).Chapter4analyzestherequirementsformassiveaccesstechnologyin6Gbasedonscenariousecases,focusingonindicatorslikeconnectiondensity,latency,andterminaldatatransmissionfrequency,andaimingtoreducelatencybysimplifyingcommunicationprocessesandenhancingconnectiondensitythroughoptimizedtechnicalsolutions.Chapter5outlinesthecommunicationprocessformassiveconnections,encompassingsimplifiedsecurityandtransmissionmechanisms.Chapter6thoroughlyexaminestheprimarychallengesandexploreskeytechnologiestofulfillthesedemands.TheseencompassURAT,efficientconnectionlesstransmissiontechnology,multi-userencodinganddecodingschemesbasedonODMA,sparseIDMAforUMA,multipleaccessschemesbasedonresourcehoppingandVirtualUserSplitting,PDRA,iterativereceiversbasedonSparsificationTransformation,capacity-optimizedandlow-complexityiterativereceivers,andmulti-userencodingschemes.Chapter7offersaforward-lookingperspectiveontechnologicalevolutiontoshapetheroadmapforfuturemassiveaccesstechnology.Thisencompassesnon-orthogonal,uncoordinated,integratedrandomaccessandmultipleaccesstransmission,andconsiderationsforreceiverdesign.Chapter8concludesandprovidesafutureoutlook.
Thiswhitepaperholdsvitalsignificanceindrivingtheresearchanddevelopmentofmassiveaccesstechnologyintheeraof6G.Firstly,thiswhitepaperintroducesthe
6/84
fundamentalframeworkanduniversalrequirementsofmassiveaccesstechnology,offeringguidanceandreferenceforfutureresearch.Next,thiswhitepaperprovidesadetailedoverviewofthekeytechnicalsolutionsformassiveaccesstechnology,offeringinsightsandguidanceforresearchinrelevantfields.Finally,thiswhitepaperextensivelydeliberatesonthedemandchallengesandtheircorrespondingtechnicalroadmaps,establishingaconsensusandgroundworkforfutureendeavors.Webelievethat,throughcollectiveendeavors,massiveaccesstechnologywillprogressandcontributesignificantlytotheIoTandassociatedfields,establishingthegroundworkforanadvancedintelligentsocietyanddeliveringincreasedconvenienceandinnovationtopeople'slives.
7/84
2.ApplicationScenariosofMassiveAccessTechnology(CICT
Mobile,ChinaUnicom)
6Gisexpectedtodemonstrateanotablysubstantialincreaseinconnectiondensitycomparedto4Gand5G.While4Gboastsaconnectiondensityof2,000connectionspersquarekilometerand5Greachesonemillionconnectionspersquarekilometer,theprevailingindustryexpectationisthat6Gwillachieveastaggeringtenmillionconnectionspersquarekilometerorpossiblyevenhigher.Inmassiveconnectionscenarios,adiverserangeofterminaldevicetypesisanticipated.AlongsidetraditionalIoTdevices,theintroductionofnovelunsourced,low-powerterminaldevicesisexpected.
InJune2023,theITUfinalizedaproposal[4]outliningtheframeworkandoverallgoalsforIMT's2030andfuturedevelopment,andintroducedsixprimaryapplicationscenariosfor6G.Ontheonehand,itevolvedtheeMBB,mMTC,andURLLCscenarioswithin5G,presentingImmersiveCommunication,MassiveCommunication,andHRLLCscenarios.Ontheotherhand,itexpandedupontheexisting5GscenariostoproposeUbiquitousConnectivity,IntegratedArtificialIntelligenceandCommunication,andIntegratedSensingandCommunicationscenarios.
MassiveCommunicationscenariosencompassawiderangeofapplications,suchassmartcities,transportation,logistics,healthcare,energy,environmentalmonitoring,agriculture,andmanyotherfields.Theseapplicationsfrequentlyrequiresupportforavarietyofbattery-freeorlong-life-batteryIoTdevices.Highconnectiondensityisrequiredforsuchscenarios,andthedocumentproposesadensityrequirementrangingfrom106to108devicespersquarekilometer.Additionally,tailoredtospecificusecases,thereisarequirementtoaccommodatevaryingdatarates,powerconsumption,mobility,andcoveragerange,aswellasconsiderationsforsecurityandreliability.
Inexistingtechnology,terminalsmustestablishnetworkaccessbeforeinitiatingdatatransmission.Thenumberofterminalsthatcanbesupportedislimitedbydatatransmissionresourcesandcoordinatedsignalingresourcesofthenetwork.ForMassiveCommunicationin6G,connectiondensityisrequiredatamuchhigherlevelthanin5G,possibly100timeshigher.Comparedto5G,6Gscenarioswillsupportawiderrangeoftypicalusecasesandterminaldevicetypes,placingadditionaldemandsonthetrafficmodel.Forexample,therewillbeanincreaseintheterminaldatatransmissionfrequency.Onemessageperdeviceeverytwohoursistherecommendedterminaldatatransmissionfrequencyunderthe5GmMTCtrafficmodel[5].AccordingtotheIMT-2030(6G)PromotionGroup,terminaldatatransmissionfrequencyinultra-large-scaleconnectionscenariosmightbeaslowasonceadayorashighasonceeveryfewmilliseconds[6].Thereisagreaterneedforconcurrentuseraccesswithinaparticularperiodoftimeduetotheincreaseinterminalquantityanddatatransmissionfrequency.Itisexpectedtosupportsimultaneousaccessofhundredsofterminalspermillisecond.Thechallengethatneedstobeovercomeissupportingcommunicationformassiveterminalswhilestayingwithinthelimitsofnetworksignalinganddatatransmissionresources.Therefore,itisessentialtoexploremassiveaccesstechnologytoaccommodatea
8/84
greaternumberofterminalconnections.
MassiveCommunicationscenariosputforwardhigherrequirementsforconnectiondensity,whiletherequirementforlowlatencyisusuallylessstrictandcanoftentoleraterelativelyhighlatency,enablingend-to-endcommunicationtobeachievedwithinmereseconds.Inpracticalapplications,itisimportanttoconsidernotonlythenumberofsupportedterminals,butalsothedatapacketsize,end-to-endcommunicationlatency,andthereliabilityofdatatransmission.Insomecases,therequiredconnectiondensityislessthanthatofMassiveCommunicationscenarios,whichcallfor108devicespersquarekilometer.Itissufficienttohaveabout106devicespersquarekilometer.However,applicationssuchasIoVandsmartfactoriesrequiremillisecond-levelend-to-endcommunicationlatency.Furthermore,insomeapplicationscenariossuchasdigitaltwins,largerdatapacketsizesarerequired.Examplesoftheseincludethetransferofpacketsofhundredstothousandsofbytes.Onthebasisofmeetinghigherlatencyrequirementsandlargertransmissionpackets,furthersupportingtheaccessofmassiveterminalsfacessignificantchallenges.Therefore,thereisanimperativeneedtoconductresearchonmassiveaccesstechnologycapableofmeetinghighlatencyrequirementsandfacilitatinglargerdatapackettransmissions.
Accordingtodifferenttrafficmodelandindicatorrequirements,theapplicationscenariosofmassiveaccesstechnologycanbedividedintotwocategories:onetypeisMassiveCommunication,whichrequiressupportforalargenumberofterminals(e.g.,108devices/km2),isnotsensitivetolatency,usuallytransmitsburstysmalldatapackets,andhashighdemandsforconnectiondensitybutlowrequirementsfordatatransmissionfrequency,latency,datapacketsize,andreliability,asindicatedbytheorangecurveinFigure2-1.Theothertypeisthescenariothatsupportsalargenumberofterminals(e.g.,106devices/km2)whileplacinghigherdemandsonthesizeoftransmitteddatapackets,end-to-endcommunicationlatency,anddatatransmissionreliability.ThisscenariointegratesthecharacteristicsofMassiveCommunication,ImmersiveCommunication,andHRLLCscenarios,representingacombinationofthesethreescenarios,withitskeyindicatorcapabilitiesshownbythebluecurveinFigure2-1.Ithaslowerrequirementsforconnectiondensitycomparedtothefirsttypeofapplicationscenario,buthigherrequirementsfordatatransmissionfrequency,latency,datapacketsize,andreliability.
Figure2-1ApplicationScenariosofMassiveAccessTechnology
Massiveaccesstechnologyenablestheconnectionofmassiveterminals,meetingthe
9/84
demandsofthementionedscenarios.Ontheonehand,itcansatisfythe6Grequirementsforlatency,connectiondensity,andotherindicators.Ontheotherhand,inusecaseslikedigitaltwinsandultra-low-powerIoTthatnecessitatethedeploymentofmassivedevices,massiveaccesstechnologycanbeemployedasanunderlyingtechnologytosupportterminalaccessanddatatransmission.
10/84
3.ImportantUseCases
3.1ToCDigitalTwinWorld(CICTMobile)
Byintegratingsensing,computing,modeling,simulation,andcommunicationtechnologies,digitaltwinenablesreal-timeinteractionandseamlessconnectionbetweenthephysicalanddigitalworlds.Itsextensiveapplicationsspanacrossintelligentmanufacturing,smartcities,smartagriculture,andhealthcare[7].Digitaltwinpresentsmanychallengesforthearchitectureandcapabilitiesof6Gnetworks,demandingsubstantialdeviceconnections,highthroughput,low-latencytransmission,andmore.Thisisessentialfortheprecisereal-timecaptureofsubtlechangesinthephysicalworldandthetransmissionofinteractioninformation.Forexample,thefollowingtechnicalspecificationsmustbemet:connectiondensityof107–108devicespersquarekilometer,airinterfacelatencyoflessthan1ms,transmissionratesrangingfromMbpstoGbps,anderrorprobabilityoflessthan10-5[6].
Digitaltwiniswidelyusedonboththeconsumerside(C-end)andindustrialside(B-end),stimulatingcreativeactivitiesandcommunicationinthevirtualworld,whileenhancingindividuals'understandingofthelawsgoverningthephysicalworld.TheToCdigitaltwinworldexpandsuponthephysicalanddigitalworldsbyintroducingahuman-centricdimensionencompassingsensoryperception,physicality,intellect,andvalues.Thisintegrationfacilitatesinteractiveinformationexchangeamongthesethreeworlds,withafocusondeliveringpersonalized,real-time,andimmersiveexperiencesforindividuals.Itischaracterizedbyall-inclusiveconnectivity,real-timequality,andaccuracy.
Figure3-1ToCDigitalTwinWorld
Using"ImmersiveTouroftheForbiddenCity"asanexample,thefollowingillustratesthetypicalfeaturesoftheToCdigitaltwinworld:
.Personalizedexperience:ByconstructingaToCdigitaltwinworldoftheForbiddenCity,thevirtualscenerymaybeadjustedtovisitors'owntastes,improvingtheviewingexperience.Toprovidevisitorswithpersonalizedexperiences,itneedsa
11/84
highconnectiondensity—106devices/km2.
.Realtimeexperience:Thevirtualscenerymustseamlesslyintegratewiththearchitectureandculturalrelics,providingreal-timepresentationtovisitorsforaseamlessfusionofthevirtualandthephysical.Thisrequiresstringentlatencytoachievemillisecond-levelend-to-endcommunication.
.Immersiveexperience:Likethemixedreality(MR)effect,thistechniquerestoresanddisplaysthepalace'sgrandeur,coloraesthetics,historicalrelevance,andotherelementsbysuperimposinggenuinebuildingsandculturalrelicsontovirtualscenery.Thisprovidesvisitorswithanincrediblyimmersiveexperience.Toproduceacompletelyimmersiveexperience,hundredstothousandsofbytesofdatapacketsmustbetransferred.
Comparedto5G,6Ghassignificantdifferencesandhigherrequirementsintermsofimmersiveexperience.6Gwillprovidehigherperformanceintransmissionspeed,networklatency,connectiondensity,andreliability.
?Transmissionspeed:While5Gaimsforatransmissionspeedof20Gbps,6Gisprojectedtoreach1Tbps,whichwillmaketheimmersiveexperiencesmootherandmorerealistic.
?Networklatency:6Gisexpectedtoachieveultra-lowlatencyaslowas1ms.Comparedtothelatencyof1-10msin5G,itwillgreatlyimprovetheperformanceofreal-timeinteractioninimmersiveexperiencesandreducetheimpactoflatencyonuserexperience.
?Connectiondensity:Theconnectiondensitysupportedby5Gis1millionconnectionspersquarekilometer,and6Gisexpectedtosupport10millionconnectionspersquarekilometer.Thismeansthat6Gwillbeabletoprovidehigherqualityimmersiveexperiencesinhighconnectiondensityscenarios.
?Reliability:Tomeettherequirementsofimmersiveexperiences,6Gisprojectedtomakesignificantadvancementsinreliability.Forexample,itaimstoprovide99.9999%servicereliabilityforcriticaltasksandreal-timeinteractiveapplications.
Table3-1illustratestheestimatedtrafficmodelforthisusecase,includingtheterminaldevicetype,terminaldevicequantity,andstatusreportingfrequency.
Table3-1TrafficmodelforImmersiveTouroftheForbiddenCity
TerminalDevice
Type
TerminalDeviceQuantity
Status
ReportingFrequency
Terminal
Quantity
perSecond
EstimationBasis
Tourists'smartdevices
104~105
About1/min
103~104
NumberofvisitorstotheForbiddenCity
Buildingprotection
sensor
104~105
About1/min
103~104
UsecasesinTR22.840
12/84
Culturalrelicdisplaysensor
104~105
About1/min
103~104
NumberofculturalrelicsondisplayintheForbidden
City
Realenvironment
sensingand
imagingdevices
103~104
About1/s
103~104
AreaoftheForbiddenCity
Culturalrelic
storagesensor
105~106
About1/hour
103~104
UsecasesinTR22.011
Total(numberofterminalsaccessedand
transmittedpersecond)
104~105
Approximateestimationresults
TheToCdigitaltwinworldprioritizesthehumanexperience.Itaimstodeliverpersonalized,real-time,andimmersiveexperiencestailoredtouserneedsbysupportingmassivedevicecommunication.ComparedtotheMassiveCommunicationscenario,higherrequirementsareplacedondatatransmissionlatencyandpacketsize.Thisentailssupportingaconnectiondensityofapproximately106devices/km2,facilitatingcommunicationfromhundredsofterminalspermillisecond,andensuringmillisecond-levelend-to-endlatency.Additionally,acrossvarioususecases,thepacketsizesvaryfromhundredstothousandsofbytes.Theexistingmethodofestablishingaconnectionbeforedatatransferleadstosubstantialtransmissionlatency,impactinguserexperiencewithintheToCdigitaltwinworld.Therefore,itisnecessarytoexploremassiveaccesstechnology,simplifythesignalinginteractionfrominitialaccesstomultipleaccesstransmission,andreducelatency.
3.2CriticalConnection-IntensiveIoV(ZTE,CICTMobile)
High-densityIoVinformationtransmissionexhibitsbothmassivenessandburstiness,thusnecessitatinglowlatencyandhighreliability.Meetingtherequirementsforlowlatencyandhighreliabilityinscenariosofmassiveandburstyinformationtransmissionposesaconsiderablechallenge.Moreover,therapidmovementofvehiclenodesresultsinswiftchangesinthenetworktopologyoftheIoV,makingitevenmorechallengingtosimultaneouslymeettherequiremen
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上半年安徽省合肥經(jīng)開區(qū)政府購買服務(wù)崗招聘12人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年安徽省亳州蒙城縣小辛集鄉(xiāng)人民政府招聘10人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年安徽淮北市礦工總醫(yī)院招聘68人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年安徽池州東至縣部分鄉(xiāng)鎮(zhèn)事業(yè)單位公開招聘59人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年寧波市級(jí)機(jī)關(guān)大院后勤服務(wù)中心招考編外人員易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年醫(yī)用放射治療設(shè)備項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2025年嬰兒涼鞋項(xiàng)目可行性研究報(bào)告
- 2025年絲印隧道爐項(xiàng)目可行性研究報(bào)告
- 高中語文情感美文親愛的你把溫柔給了誰
- 2025年8口光纖盒項(xiàng)目可行性研究報(bào)告
- DB11T 1490-2017 人民防空工程防護(hù)設(shè)備安裝驗(yàn)收技術(shù)規(guī)程
- 中華醫(yī)學(xué)會(huì)肺癌臨床診療指南
- 廣告經(jīng)營(yíng)與管理教學(xué)大綱
- 環(huán)評(píng)手續(xù)轉(zhuǎn)讓協(xié)議(2篇)
- 2024交鑰匙總承包合同范本
- 醫(yī)院消防安全培訓(xùn)課件(完美版)
- 2024-2030年中國換電柜行業(yè)發(fā)展環(huán)境與競(jìng)爭(zhēng)格局分析研究報(bào)告
- 部編版(統(tǒng)編版)五年級(jí)語文下冊(cè)語文書電子版(可下載打印)
- 2024年中北大學(xué)招考聘用博士研究生(高頻重點(diǎn)復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 村衛(wèi)生室靜脈輸液規(guī)范和安全管理制度
- 供應(yīng)商大會(huì)總結(jié)報(bào)告
評(píng)論
0/150
提交評(píng)論