2024屆山東省菏澤中考試題猜想數學試卷含解析_第1頁
2024屆山東省菏澤中考試題猜想數學試卷含解析_第2頁
2024屆山東省菏澤中考試題猜想數學試卷含解析_第3頁
2024屆山東省菏澤中考試題猜想數學試卷含解析_第4頁
2024屆山東省菏澤中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省菏澤中考試題猜想數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,EF∥BC,AB=3AE,若S四邊形BCFE=16,則S△ABC=()A.16 B.18 C.20 D.242.下列四個圖形分別是四屆國際數學家大會的會標,其中屬于中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個3.某幾何體的左視圖如圖所示,則該幾何體不可能是()A. B. C. D.4.若a與5互為倒數,則a=()A. B.5 C.-5 D.5.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時6.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°7.計算-5x2-3x2的結果是()A.2x2 B.3x2 C.-8x2 D.8x28.若0<m<2,則關于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情況是()A.無實數根B.有兩個正根C.有兩個根,且都大于﹣3mD.有兩個根,其中一根大于﹣m9.﹣2的絕對值是()A.2 B. C. D.10.下列四個命題,正確的有()個.①有理數與無理數之和是有理數②有理數與無理數之和是無理數③無理數與無理數之和是無理數④無理數與無理數之積是無理數.A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y=(x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C、D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E、F,則的值為_____.12.我國古代數學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數、物價幾何?”意思是:現在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設有人,則可列方程為__________.13.已知關于x的方程x2+mx+4=0有兩個相等的實數根,則實數m的值是______.14.如圖,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC為直徑的⊙O與AC相交于點O,則陰影部分的面積為_____.15.已知整數k<5,若△ABC的邊長均滿足關于x的方程,則△ABC的周長是.16.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.三、解答題(共8題,共72分)17.(8分)為了預防“甲型H1N1”,某學校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現測得藥物8min燃畢,此時室內空氣每立方米的含藥量為6mg,請你根據題中提供的信息,解答下列問題:藥物燃燒時,求y關于x的函數關系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數關系式呢?研究表明,當空氣中每立方米的含藥量低于1.6mg時,學生方可進教室,那么從消毒開始,至少需要幾分鐘后,學生才能進入教室?研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?18.(8分)如圖,一根電線桿PQ直立在山坡上,從地面的點A看,測得桿頂端點P的仰角為45°,向前走6m到達點B,又測得桿頂端點P和桿底端點Q的仰角分別為60°和30°,求電線桿PQ的高度.(結果保留根號).19.(8分)我市正在開展“食品安全城市”創(chuàng)建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調查,將調查結果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據圖中信息,解答下列問題:此次共調查了名學生;扇形統(tǒng)計圖中D所在扇形的圓心角為;將上面的條形統(tǒng)計圖補充完整;若該校共有800名學生,請你估計對食品安全知識“非常了解”的學生的人數.20.(8分)已知關于x的一元二次方程有實數根.(1)求k的取值范圍;(2)若k為正整數,且方程有兩個非零的整數根,求k的取值.21.(8分)如圖,在平面直角坐標系xOy中,直線與雙曲線(x>0)交于點.求a,k的值;已知直線過點且平行于直線,點P(m,n)(m>3)是直線上一動點,過點P分別作軸、軸的平行線,交雙曲線(x>0)于點、,雙曲線在點M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標都是整數的點叫做整點.①當時,直接寫出區(qū)域內的整點個數;②若區(qū)域內的整點個數不超過8個,結合圖象,求m的取值范圍.22.(10分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數的圖象經過點M,N.(1)求反比例函數的解析式;(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.23.(12分)如圖,在□ABCD中,對角線AC、BD相交于點O,點E在BD的延長線上,且△EAC是等邊三角形.(1)求證:四邊形ABCD是菱形.(2)若AC=8,AB=5,求ED的長.24.某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】【分析】由EF∥BC,可證明△AEF∽△ABC,利用相似三角形的性質即可求出S△ABC的值.【詳解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,設S△AEF=x,∵S四邊形BCFE=16,∴,解得:x=2,∴S△ABC=18,故選B.【點睛】本題考查了相似三角形的判定與性質,熟練掌握相似三角形的面積比等于相似比的平方是解本題的關鍵.2、B【解析】

解:根據中心對稱的概念可得第一個圖形是中心對稱圖形,第二個圖形不是中心對稱圖形,第三個圖形是中心對稱圖形,第四個圖形不是中心對稱圖形,所以,中心對稱圖有2個.故選B.【點睛】本題考查中心對稱圖形的識別,掌握中心對稱圖形的概念是本題的解題關鍵.3、D【解析】

解:幾何體的左視圖是從左面看幾何體所得到的圖形,選項A、B、C的左視圖均為從左往右正方形個數為2,1,符合題意,選項D的左視圖從左往右正方形個數為2,1,1,故選D.【點睛】本題考查幾何體的三視圖.4、A【解析】分析:當兩數的積為1時,則這兩個數互為倒數,根據定義即可得出答案.詳解:根據題意可得:5a=1,解得:a=,故選A.點睛:本題主要考查的是倒數的定義,屬于基礎題型.理解倒數的定義是解題的關鍵.5、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點睛:本題考查了三角形、四邊形內角和定理,掌握n邊形內角和為(n﹣2)×180°(n≥3且n為整數)是解題的關鍵.7、C【解析】

利用合并同類項法則直接合并得出即可.【詳解】解:故選C.【點睛】此題主要考查了合并同類項,熟練應用合并同類項法則是解題關鍵.8、A【解析】

先整理為一般形式,用含m的式子表示出根的判別式△,再結合已知條件判斷△的取值范圍即可.【詳解】方程整理為,△,∵,∴,∴△,∴方程沒有實數根,故選A.【點睛】本題考查了一元二次方程根的判別式,當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.9、A【解析】分析:根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,在數軸上,點﹣2到原點的距離是2,所以﹣2的絕對值是2,故選A.10、A【解析】解:①有理數與無理數的和一定是有理數,故本小題錯誤;②有理數與無理數的和一定是無理數,故本小題正確;③例如=0,0是有理數,故本小題錯誤;④例如(﹣)×=﹣2,﹣2是有理數,故本小題錯誤.故選A.點睛:本題考查的是實數的運算及無理數、有理數的定義,熟知以上知識是解答此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

根據二次函數的圖象和性質結合三角形面積公式求解.【詳解】解:設點橫坐標為,則點縱坐標為,點B的縱坐標為,∵BE∥x軸,∴點F縱坐標為,∵點F是拋物線上的點,∴點F橫坐標為,∵軸,∴點D縱坐標為,∵點D是拋物線上的點,∴點D橫坐標為,,故答案為.【點睛】此題重點考查學生對二次函數的圖象和性質的應用能力,熟練掌握二次函數的圖象和性質是解題的關鍵.12、【解析】

根據每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【詳解】解:由題意可設有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.13、±4【解析】分析:由方程有兩個相等的實數根,得到根的判別式等于0,列出關于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個相等的實數根,∴解得:故答案為點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.14、6﹣π【解析】

連接、,根據陰影部分的面積計算.【詳解】連接、,,,,,為的直徑,,,,,,陰影部分的面積.故答案為.【點睛】本題考查的是扇形面積計算,掌握直角三角形的性質、扇形面積公式是解題的關鍵.15、6或12或1.【解析】

根據題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關系,分類思想的應用.【詳解】請在此輸入詳解!16、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據反比例函數系數k的幾何意義,可知k=6,∴反比例函數的解析式為;設正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數系數k的幾何意義.三、解答題(共8題,共72分)17、(1);(2)至少需要30分鐘后生才能進入教室.(3)這次消毒是有效的.【解析】

(1)藥物燃燒時,設出y與x之間的解析式y(tǒng)=k1x,把點(8,6)代入即可,從圖上讀出x的取值范圍;藥物燃燒后,設出y與x之間的解析式y(tǒng)=,把點(8,6)代入即可;(2)把y=1.6代入反比例函數解析式,求出相應的x;(3)把y=3代入正比例函數解析式和反比例函數解析式,求出相應的x,兩數之差與10進行比較,大于或等于10就有效.【詳解】解:(1)設藥物燃燒時y關于x的函數關系式為y=k1x(k1>0)代入(8,6)為6=8k1∴k1=設藥物燃燒后y關于x的函數關系式為y=(k2>0)代入(8,6)為6=,∴k2=48∴藥物燃燒時y關于x的函數關系式為(0≤x≤8)藥物燃燒后y關于x的函數關系式為(x>8)∴(2)結合實際,令中y≤1.6得x≥30即從消毒開始,至少需要30分鐘后生才能進入教室.(3)把y=3代入,得:x=4把y=3代入,得:x=16∵16﹣4=12所以這次消毒是有效的.【點睛】現實生活中存在大量成反比例函數的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數關系,然后利用待定系數法求出它們的關系式.18、(6+)米【解析】

根據已知的邊和角,設CQ=x,BC=QC=x,PC=BC=3x,根據PQ=BQ列出方程求解即可.【詳解】解:延長PQ交地面與點C,由題意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,設CQ=x,則在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,則PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,則電線桿PQ高為(6+)米.【點睛】此題重點考察學生對解直角三角形的理解,掌握解直角三角形的方法是解題的關鍵.19、(1)120;(2)54°;(3)詳見解析(4)1.【解析】

(1)根據B的人數除以占的百分比即可得到總人數;(2)先根據題意列出算式,再求出即可;(3)先求出對應的人數,再畫出即可;(4)先列出算式,再求出即可.【詳解】(1)(25+23)÷40%=120(名),即此次共調查了120名學生,故答案為120;(2)360°×=54°,即扇形統(tǒng)計圖中D所在扇形的圓心角為54°,故答案為54°;(3)如圖所示:;(4)800×=1(人),答:估計對食品安全知識“非常了解”的學生的人數是1人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖,總體、個體、樣本、樣本容量,用樣本估計總體等知識點,兩圖結合是解題的關鍵.20、(1);(2)k=1【解析】

(1)根據一元二次方程2x2+4x+k﹣1=0有實數根,可得出△≥0,解不等式即可得出結論;(2)分別把k的正整數值代入方程2x2+4x+k﹣1=0,根據解方程的結果進行分析解答.【詳解】(1)由題意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k為正整數,∴k=1,2,1.當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x=0,解得:x=0或x=-2,有一個根為零;當k=2時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+1=0,解得:x=,無整數根;當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+2=0,解得:x1=x2=-1,有兩個非零的整數根.綜上所述:k=1.【點睛】本題考查了一元二次方程根的判別式:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(1)△<0?方程沒有實數根.21、(1),;(2)①3,②.【解析】

(1)將代入可求出a,將A點坐標代入可求出k;(2)①根據題意畫出函數圖像,可直接寫出區(qū)域內的整點個數;②求出直線的表達式為,根據圖像可得到兩種極限情況,求出對應的m的取值范圍即可.【詳解】解:(1)將代入得a=4將代入,得(2)①區(qū)域內的整點個數是3②∵直線是過點且平行于直線∴直線的表達式為當時,即線段PM上有整點∴【點睛】本題考查了待定系數法求函數解析式以及函數圖像的交點問題,正確理解整點的定義并畫出函數圖像,運用數形結合的思想是解題關鍵.22、(1);(2)點P的坐標是(0,4)或(0,-4).【解析】

(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標,把M的坐標代入反比例函數的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標.【詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標代入得:k=4,∴反比例函數的解析式是;(2).∵△OPM的面積與四邊形BMON的面積相等,∴.∵AM=2,∴OP=4.∴點P的坐標是(0,4)或(0,-4).23、(1)證明見解析(2)4-3【解析】試題分析:(1)根據等邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論