2024屆安徽省滁州全椒縣聯(lián)考中考三模數(shù)學(xué)試題含解析_第1頁
2024屆安徽省滁州全椒縣聯(lián)考中考三模數(shù)學(xué)試題含解析_第2頁
2024屆安徽省滁州全椒縣聯(lián)考中考三模數(shù)學(xué)試題含解析_第3頁
2024屆安徽省滁州全椒縣聯(lián)考中考三模數(shù)學(xué)試題含解析_第4頁
2024屆安徽省滁州全椒縣聯(lián)考中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆安徽省滁州全椒縣聯(lián)考中考三模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列實(shí)數(shù)為無理數(shù)的是()A.-5 B. C.0 D.π2.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點(diǎn),若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<03.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標(biāo)軸有3個不同交點(diǎn);⑤邊長相等的多邊形內(nèi)角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.4.據(jù)相關(guān)報道,開展精準(zhǔn)扶貧工作五年以來,我國約有55000000人擺脫貧困,將55000000用科學(xué)記數(shù)法表示是()A.55×106 B.0.55×108 C.5.5×106 D.5.5×1075.如圖,數(shù)軸上表示的是下列哪個不等式組的解集()A. B. C. D.6.下列四個數(shù)表示在數(shù)軸上,它們對應(yīng)的點(diǎn)中,離原點(diǎn)最遠(yuǎn)的是()A.﹣2 B.﹣1 C.0 D.17.下面的幾何圖形是由四個相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.8.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數(shù)為()A.2 B.3 C.4 D.59.尺規(guī)作圖要求:Ⅰ、過直線外一點(diǎn)作這條直線的垂線;Ⅱ、作線段的垂直平分線;Ⅲ、過直線上一點(diǎn)作這條直線的垂線;Ⅳ、作角的平分線.如圖是按上述要求排亂順序的尺規(guī)作圖:則正確的配對是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ10.用半徑為8的半圓圍成一個圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.8二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結(jié)論的序號).12.如圖,是由一些大小相同的小正方體搭成的幾何體分別從正面看和從上面看得到的平面圖形,則搭成該幾何體的小正方體最多是_______個.13.若式子有意義,則x的取值范圍是______.14.若a是方程的解,計(jì)算:=______.15.若正六邊形的內(nèi)切圓半徑為2,則其外接圓半徑為__________.16.一元二次方程x﹣1=x2﹣1的根是_____.三、解答題(共8題,共72分)17.(8分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點(diǎn)E在△ABC內(nèi),∠CAE+∠CBE=1.(1)如圖①,當(dāng)四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當(dāng)四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當(dāng)四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設(shè)BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)18.(8分)如圖,在△ABC中,AB>AC,點(diǎn)D在邊AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于點(diǎn)E;(尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)若BC=5,點(diǎn)D是AC的中點(diǎn),求DE的長.19.(8分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn),連接CD,過點(diǎn)D作DH⊥x軸于點(diǎn)H,過點(diǎn)A作AE⊥AC交DH的延長線于點(diǎn)E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.20.(8分)閱讀材料:各類方程的解法求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.問題:方程x3+x2-2x=0的解是x1=0,x2=,x3=;拓展:用“轉(zhuǎn)化”思想求方程的解;應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點(diǎn)C.求AP的長.21.(8分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題中選擇一個,七年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)在扇形統(tǒng)計(jì)圖中,選擇“愛國”主題所對應(yīng)的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計(jì)選擇以“友善”為主題的七年級學(xué)生有多少名?22.(10分)一個不透明的袋子中,裝有標(biāo)號分別為1、-1、2的三個小球,他們除標(biāo)號不同外,其余都完全相同;(1)攪勻后,從中任意取一個球,標(biāo)號為正數(shù)的概率是;(2)攪勻后,從中任取一個球,標(biāo)號記為k,然后放回?cái)噭蛟偃∫粋€球,標(biāo)號記為b,求直線y=kx+b經(jīng)過一、二、三象限的概率.23.(12分)如圖,為的直徑,,為上一點(diǎn),過點(diǎn)作的弦,設(shè).(1)若時,求、的度數(shù)各是多少?(2)當(dāng)時,是否存在正實(shí)數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長.24.如圖,AB為⊙O的直徑,點(diǎn)E在⊙O,C為弧BE的中點(diǎn),過點(diǎn)C作直線CD⊥AE于D,連接AC、BC.試判斷直線CD與⊙O的位置關(guān)系,并說明理由若AD=2,AC=,求⊙O的半徑.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項(xiàng).【詳解】A、﹣5是整數(shù),是有理數(shù),選項(xiàng)錯誤;B、是分?jǐn)?shù),是有理數(shù),選項(xiàng)錯誤;C、0是整數(shù),是有理數(shù),選項(xiàng)錯誤;D、π是無理數(shù),選項(xiàng)正確.故選D.【點(diǎn)睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).2、B【解析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.3、B【解析】∵①對頂角相等,故此選項(xiàng)正確;②若a>b>0,則<,故此選項(xiàng)正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項(xiàng)錯誤;④拋物線y=x2﹣2x與坐標(biāo)軸有2個不同交點(diǎn),故此選項(xiàng)錯誤;⑤邊長相等的多邊形內(nèi)角不一定都相等,故此選項(xiàng)錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.4、D【解析】試題解析:55000000=5.5×107,故選D.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù)5、B【解析】

根據(jù)數(shù)軸上不等式解集的表示方法得出此不等式組的解集,再對各選項(xiàng)進(jìn)行逐一判斷即可.【詳解】解:由數(shù)軸上不等式解集的表示方法得出此不等式組的解集為:x≥-3,

A、不等式組的解集為x>-3,故A錯誤;B、不等式組的解集為x≥-3,故B正確;C、不等式組的解集為x<-3,故C錯誤;D、不等式組的解集為-3<x<5,故D錯誤.故選B.【點(diǎn)睛】本題考查的是在數(shù)軸上表示一元一次不等式組的解集,根據(jù)題意得出數(shù)軸上不等式組的解集是解答此題的關(guān)鍵.6、A【解析】

由于要求四個數(shù)的點(diǎn)中距離原點(diǎn)最遠(yuǎn)的點(diǎn),所以求這四個點(diǎn)對應(yīng)的實(shí)數(shù)絕對值即可求解.【詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個數(shù)表示在數(shù)軸上,它們對應(yīng)的點(diǎn)中,離原點(diǎn)最遠(yuǎn)的是-1.故選A.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對應(yīng)關(guān)系,以及估算無理數(shù)大小的能力,也利用了數(shù)形結(jié)合的思想.7、C【解析】試題分析:觀察可得,只有選項(xiàng)C的主視圖和左視圖相同,都為,故答案選C.考點(diǎn):簡單幾何體的三視圖.8、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側(cè)正方體上添加1個,往第3排中間正方體上添加2個、右側(cè)兩個正方體上再添加1個,即一共添加4個小正方體,故選C.9、D【解析】【分析】分別利用過直線外一點(diǎn)作這條直線的垂線作法以及線段垂直平分線的作法和過直線上一點(diǎn)作這條直線的垂線、角平分線的作法分別得出符合題意的答案.【詳解】Ⅰ、過直線外一點(diǎn)作這條直線的垂線,觀察可知圖②符合;Ⅱ、作線段的垂直平分線,觀察可知圖③符合;Ⅲ、過直線上一點(diǎn)作這條直線的垂線,觀察可知圖④符合;Ⅳ、作角的平分線,觀察可知圖①符合,所以正確的配對是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故選D.【點(diǎn)睛】本題主要考查了基本作圖,正確掌握基本作圖方法是解題關(guān)鍵.10、A【解析】

由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點(diǎn)睛】此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關(guān)鍵是應(yīng)用半圓的弧長=圓錐的底面周長.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②③【解析】

依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據(jù)△DFP∽△BPH,可得,再根據(jù)BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據(jù)CP=CD,即可得出PD2=PH?CD;根據(jù)三角形面積計(jì)算公式,結(jié)合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設(shè)正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點(diǎn)睛】本題考查了正方形的性質(zhì)、相似三角形的判定與性質(zhì)、解直角三角形等知識,正確添加輔助線、靈活運(yùn)用相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.12、7【解析】

首先利用從上面看而得出的俯視圖得出該幾何體的第一層是由幾個小正方體組成,然后進(jìn)一步根據(jù)其從正面看得出的主視圖得知其第二層最多可以放幾個小正方體,然后進(jìn)一步計(jì)算即可得出答案.【詳解】根據(jù)俯視圖可得出第一層由5個小正方體組成;再結(jié)合主視圖,該正方體第二層最多可放2個小正方體,∴,∴最多是7個,故答案為:7.【點(diǎn)睛】本題主要考查了三視圖的運(yùn)用,熟練掌握三視圖的特性是解題關(guān)鍵.13、x>.【解析】解:依題意得:2x+3>1.解得x>.故答案為x>.14、1【解析】

根據(jù)一元二次方程的解的定義得a2﹣3a+1=1,即a2﹣3a=﹣1,再代入,然后利用整體思想進(jìn)行計(jì)算即可.【詳解】∵a是方程x2﹣3x+1=1的一根,∴a2﹣3a+1=1,即a2﹣3a=﹣1,a2+1=3a∴故答案為1.【點(diǎn)睛】本題考查了一元二次方程的解:使一元二次方程兩邊成立的未知數(shù)的值叫一元二次方程的解.也考查了整體思想的運(yùn)用.15、【解析】

根據(jù)題意畫出草圖,可得OG=2,,因此利用三角函數(shù)便可計(jì)算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內(nèi)切圓半徑為2,則其外接圓半徑為.故答案為.【點(diǎn)睛】本題主要考查多邊形的內(nèi)接圓和外接圓,關(guān)鍵在于根據(jù)題意畫出草圖,再根據(jù)三角函數(shù)求解,這是多邊形問題的解題思路.16、x=0或x=1.【解析】

利用因式分解法求解可得.【詳解】∵(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,則x=0或x=1,故答案為:x=0或x=1.【點(diǎn)睛】本題主要考查了解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點(diǎn)選擇合適、簡便的方法是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)i)證明見試題解析;ii);(2);(3).【解析】

(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進(jìn)一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì);正方形的性質(zhì);矩形的性質(zhì);菱形的性質(zhì).18、(1)作圖見解析;(2)【解析】

(1)根據(jù)作一個角等于已知角的步驟解答即可;(2)由作法可得DE∥BC,又因?yàn)镈是AC的中點(diǎn),可證DE為△ABC的中位線,從而運(yùn)用三角形中位線的性質(zhì)求解.【詳解】解:(1)如圖,∠ADE為所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵點(diǎn)D是AC的中點(diǎn),∴DE為△ABC的中位線,∴DE=BC=.19、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對應(yīng)邊成比例求得EH的長,進(jìn)繼而求得DE的長;(2)找點(diǎn)C關(guān)于DE的對稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對稱點(diǎn)G(-2,-),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點(diǎn)的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點(diǎn)C關(guān)于DE的對稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對稱點(diǎn)G(﹣2,﹣),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對稱軸為:直線m=<2,開口向下,∴m=時,△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,1)當(dāng)KF′=KF″時,如圖3,點(diǎn)K在F′F″的垂直平分線上,所以K與B重合,坐標(biāo)為(3,0),∴OK=3;2)當(dāng)F′F″=F′K時,如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當(dāng)F″F′=F″K時,如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點(diǎn)睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點(diǎn)和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關(guān)鍵.20、(1)-2,1;(2)x=3;(3)4m.【解析】

(1)因式分解多項(xiàng)式,然后得結(jié)論;

(2)兩邊平方,把無理方程轉(zhuǎn)化為整式方程,求解,注意驗(yàn)根;

(3)設(shè)AP的長為xm,根據(jù)勾股定理和BP+CP=10,可列出方程,由于方程含有根號,兩邊平方,把無理方程轉(zhuǎn)化為整式方程,求解,【詳解】解:(1),,所以或或,,;故答案為,1;(2),方程的兩邊平方,得即或,,當(dāng)時,,所以不是原方程的解.所以方程的解是;(3)因?yàn)樗倪呅问蔷匦?,所以,設(shè),則因?yàn)?,,兩邊平方,得整理,得兩邊平方并整理,得即所以.?jīng)檢驗(yàn),是方程的解.答:的長為.【點(diǎn)睛】考查了轉(zhuǎn)化的思想方法,一元二次方程的解法.解無理方程是注意到驗(yàn)根.解決(3)時,根據(jù)勾股定理和繩長,列出方程是關(guān)鍵.21、(1)條形統(tǒng)計(jì)圖如圖所示,見解析;(2)選擇“愛國”主題所對應(yīng)的圓心角是144°;(3)估計(jì)選擇以“友善”為主題的七年級學(xué)生有360名.【解析】

(1)根據(jù)誠信的人數(shù)和所占的百分比求出抽取的總?cè)藬?shù),用總?cè)藬?shù)乘以友善所占的百分比,即可補(bǔ)全統(tǒng)計(jì)圖;(2)用360°乘以愛國所占的百分比,即可求出圓心角的度數(shù);(3)用該校七年級的總?cè)藬?shù)乘以“友善”所占的百分比,即可得出答案.【詳解】解:(1)本次調(diào)查共抽取的學(xué)生有(名)選擇“友善”的人數(shù)有(名)∴條形統(tǒng)計(jì)圖如圖所示:(2)∵選擇“愛國”主題所對應(yīng)的百分比為,∴選擇“愛國”主題所對應(yīng)的圓心角是;(3)該校七年級共有1200名學(xué)生,估計(jì)選擇以“友善”為主題的七年級學(xué)生有名.故答案為:(1)條形統(tǒng)計(jì)圖如圖所示,見解析;(2)選擇“愛國”主題所對應(yīng)的圓心角是144°;(3)估計(jì)選擇以“友

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論