版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
HHSPublicAccess
Authormanuscript
LabInvest.Authormanuscript;availableinPMC2020November24.
Publishedinfinaleditedformas:
LabInvest.2019July;99(7):1019–1029.doi:10.1038/s41374-019-0202-4.
Artificialintelligenceinneuropathology:deeplearning-basedassessmentoftauopathy
MaximSignaevsky1,2,3,MarcelPrastawa1,4,KurtFarrell1,2,3,NabilTabish1,2,3,ElenaBaldwin1,2,3,NataliaHan1,2,3,MeganA.Iida1,2,3,JohnKoll1,4,ClareBryce1,2,3,DushyantPurohit1,2,5,VahramHaroutunian5,6,AnnC.McKee7,8,9,10,11,ThorD.Stein8,9,10,11,Charles
L.WhiteIII12,JamieWalker12,TimothyE.Richardson12,RussellHanson1,2,3,MichaelJ.Donovan1,4,CarlosCordon-Cardo1,4,JackZeineh1,4,GerardoFernandez1,4,JohnF.Crary1,2,3
1DepartmentofPathology,IcahnSchoolofMedicineatMountSinai,NewYork,NY10029,USA
2DepartmentofNeuroscience,IcahnSchoolofMedicineatMountSinai,NewYork,NY10029,USA
3RonaldM.LoebCenterforAlzheimer’sDisease,IcahnSchoolofMedicineatMountSinai,NewYork,NY10029,USA
4CenterforComputationalandSystemsPathology,IcahnSchoolofMedicineatMountSinai,NewYork,NY10025,USA
5DepartmentsofPsychiatryandNeuroscience,IcahnSchoolofMedicineatMountSinai,NewYork,NY10029,USA
6J.JamesPetersVAMedicalCenter,Bronx,NY,USA
7DepartmentofNeurology,BostonUniversitySchoolofMedicine,Boston,MA02118,USA
8DepartmentofPathology,BostonUniversitySchoolofMedicine,Boston,MA02118,USA
9Alzheimer’sDiseaseCenter,CTEProgram,BostonUniversitySchoolofMedicine,Boston,MA02118,USA
10MentalIllnessResearch,EducationandClinicalCenter,JamesJ.PetersVABostonHealthcareSystem,Boston,MA02130,USA
11DepartmentofVeteranAffairsMedicalCenter,Bedford,MA01730,USA
12NeuropathologyLaboratory,DepartmentofPathology,UTSouthwesternMedicalCenter,Dallas,TX75390,USA
Abstract
Accumulationofabnormaltauinneurofibrillarytangles(NFT)occursinAlzheimerdisease(AD)andaspectrumoftauopathies.Thesetauopathieshavediverseandoverlappingmorphological
JohnF.Crary,
john.crary@.
ConflictofinterestTheauthorsdeclarethattheyhavenoconflictofinterest.
Publisher’snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
LabInvest.Authormanuscript;availableinPMC2020November24.
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page2
phenotypesthatobscureclassificationandquantitativeassessments.Recently,powerfulmachinelearning-basedapproacheshaveemerged,allowingtherecognitionandquantificationofpathologicalchangesfromdigitalimages.Here,weapplieddeeplearningtotheneuropathologicalassessmentofNFTinpostmortemhumanbraintissuetodevelopaclassifiercapableofrecognizingandquantifyingtauburden.Thehistopathologicalmaterialwasderivedfrom22autopsybrainsfrompatientswithtauopathies.Weusedacustomweb-basedinformaticsplatformintegratedwithanin-houseinformationmanagementsystemtomanagewholeslideimages(WSI)andhumanexpertannotationsasgroundtruth.Weutilizedfullyannotatedregionstotrainadeeplearningfullyconvolutionalneuralnetwork(FCN)implementedinPyTorchagainstthehumanexpertannotations.WefoundthatthedeeplearningframeworkiscapableofidentifyingandquantifyingNFTwitharangeofstainingintensitiesanddiversemorphologies.WithourFCNmodel,weachievedhighprecisionandrecallinnaiveWSIsemanticsegmentation,correctlyidentifyingtangleobjectsusingaSegNetmodeltrainedfor200epochs.OurFCNisefficientandwellsuitedforthepracticalapplicationofWSIswithaverageprocessingtimesof45minperWSIperGPU,enablingreliableandreproduciblelarge-scaledetectionoftangles.Wemeasuredperformanceontestdataof50pre-annotatedregionsoneightnaiveWSIacrossvarioustauopathies,resultingintherecall,precision,andanF1scoreof0.92,0.72,and0.81,respectively.MachinelearningisausefultoolforcomplexpathologicalassessmentofADandothertauopathies.Usingdeeplearningclassifiers,wehavethepotentialtointegratecell-andregion-specificannotationswithclinical,genetic,andmoleculardata,providingunbiaseddataforclinicopathologicalcorrelationsthatwillenhanceourknowledgeoftheneurodegeneration.
Introduction
Tau-relatedneurodegenerativedisorders,thetauopathies,compriseaheterogeneousgroupofdisorderswithaclinicalspectrumthatincludesprimarymotorsymptoms,movementdisorder,psychiatricdysfunction,andcognitiveimpairment[1].Histomorphologically,tauopathiesarecharacterizedbyintracellulardepositionofhyperphosphorylatedtauprotein.Variousisoformcompositions,morphology,andanatomicaldistributionsofintracellulartaurepresentdistinctdiagnosticfeaturesoftauopathies[1–3].Howpathologicaltaucausesneuronaldysfunctionanddegenerationisunclear.Severalmechanismshavebeenimplicated,includingbothgeneticandenvironmentalriskfactors,butmostcasesareidiopathic[1,3–5].Sporadictauopathies,suchasthevastmajorityofAlzheimerdisease(AD)andprogressivesupranuclearpalsy(PSP)cases,areassociatedwithcommongeneticriskalleles[1,3].Rarehighlypenetrantmutationsinthemicrotubule-associatedproteintaugeneareassociatedwithsomeformsoffrontotemporallobardegeneration[6].
Environmentalfactors,suchastraumaticbraininjuryinthecaseofchronictraumaticencephalopathy(CTE)orputativeneurotoxins,havealsobeenimplicated[7,8].
Pathologicalchangesintaumetabolismandpost-translationalmodificationsresultintheaccumulationoftoxicformsofmisfoldedtauaggregatesinneuronsandglialcellsinvariousbrainregions.Thesemisfoldedaggregatesareassociatedwithlossoffunctionandultimatelycelldeath[1,2].
Pathologicaltauformsinclusionsinneuronsandgliawithhistomorphologicallydistinguishablefeatures.Inneurons,thesetaketheformoftheclassicalflame-shaped
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page3
intracellularneurofibrillarytangles(NFTs),granularpre-NFTs,extracellular“ghost”tangles,ringtangles,andglobosetangles,amongothers[9].Inglia,thereisaspectrumofcharacteristichistomorphologicalformsthatarecommonlyassociatedwithspecificdiseases,includingglialplaquesofcorticobasaldegeneration,tuftedastrocytesofPSP,globularastroglialinclusionsinglobularglialtauopathy,ramifiedastrocytesofPickdisease,andthorn-shapedastrocytesaswellasgranularfuzzyastrocytesofaging-relatedtauastrogliopathy[9–11].Onerecentlyproposedclassificationschemecodifiessevenprimarytauopathies,andtwosecondarytauopathiesundertheumbrellaofneurodegenerativediseases,eachwithauniqueconstellationofregionalvulnerabilityandhistomorphologyoftauaggregatesthatdefinethem[1,2].Pathologicalaccumulationofhyperphosphorylatedtauisalsodescribedinvariousinfectious/post-infectious,metabolic,genetic/chromosomal,neoplastic/hamartomatous,andmyopathicdiseases[12].Giventhecomplexityandmorphologicaloverlap,diagnosingthesediseasesisachallengeforneuropathologists,andcommandsahighdegreeofexpertise.
Microscopicanalysisofstainedpostmortemsectionsbyatrainedexpertremainstheonlymodalityofconfirmatorydiagnosisoftauopathies.Despitethecontinuouseffortandimprovementsinthefield,theanalysesrequiredfordefinitivediagnosisandsubtypingofneurodegenerativediseasesremainhighlytime-andcost-consumingandaresubjecttoasubstantialdegreeofinter-andintra-observervariability,thuslackingoverallaccuracyandprecision.ThegoldstandardforhistomorphologicalassessmentoftauburdenandprogressioninAlzheimer’sdiseaseistheBraakstagingsystem,whichfocusesonthehierarchicalsequenceoftauaccumulation,butnotaquantitativemeasurementoftauburden,althoughdistributionandqualitativeNFTandthreaddensityarecorrelatedinthisstagingsystem[13].Despitethislimitation,theBraakstagingsystemhasbeenwidelyacceptedandadoptedfordecadesforitssimplicityandrobustness.Recentinterestindifferentialsemi-quantitativeassessmentoftauburdeninADisexemplifiedintheworkofJellinger[14].
Further,variousstagesofintracellularpathologictauaccumulationaredescribed(e.g.,pre-tangles,matureNFTs,andso-called“ghost”tangles—theremnantsofthetaufibrillaryscaffoldafterneuronalcelldeath;Fig.1).TheBraakstagingapproachdoesnotaddressthesefeatures,andthusinherentlylacksgranularityandquantification.Atthesametime,thefieldofdiagnosticneuropathologyisfacingchallengesrelatedtotheoveralllackofaccuracy,demandedbytheever-evolvingresearchandhealthcarestandards,anddiscrepancieswithclinicopathologicalcorrelations,witharecognizedneedtoaddresstheseissues[15].
Recently,therehasbeenanincreasinginterestindevelopingcomputationalmethodstoassistthepathologistinhistologicalanalysisviadigitalmicroscopicwholeslideimages(WSI).
Thisisprimarilyintendedtoreducethehumanerrorrateandbringaboutuniformityandaccuracyinpathologicaldiagnosis[16].Oneoftheapproachesthathasbeenanticipatedandsoughtafterfornearlyhalfacenturyisartificialintelligence(AI)[17,18].ThemostadvancedAI,calleddeeplearning(DL),isnowusedforcomplextaskssuchasspeechrecognition,languagetranslation,andimagerecognitionandinterpretation[19–21].Litjensetal.provideacomprehensivesurveyofpublishedstudiesontheuseofAI/DLinmedicalimageanalysisincludingWSIinpathology[17].Althoughmachinelearning-basedmethodshavehadlimitedapplicationindiagnosticpathologytodate,duetothevariabilityof
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page4
laboratorystandardsandoutcomes,andlackofreliablecomputer-backedplatforms,advanceshavebeenmaderecently.Therelevanceandpotentialofautomatedclassificationalgorithmsinsurgicalpathologyareexemplifiedbyitsapplicationtothehistologicgradingandprogressionofbreastandprostatecancer[17,22,23].Theseendeavorspaveawaytowardincreaseduseofmachinelearningforimprovingstratification,characterization,andquantificationformanyotherdiseaseprocesses,includingtheneuropathologicalassessmentoftauopathiesandADcohorts.Todate,nodatasetsderivedfromtheapplicationofmachine-basedlearningtoneurodegenerativediseaseareavailable.
WeaimedtodevelopandtestanovelDLalgorithmusingconvolutionalneuralnetworks
[20]thatwouldbeabletorecognize,classify,andquantifydiagnosticelementsoftauopathiesonWSIofpostmortemhumanbraintissuespecimensfrompatientswithtau-associatedneurodegenerativeconditionsinordertobetterstratifypatientsforclinicalandothercorrelativestudies(Fig.2).Inthisstudy,wefocusedonthedevelopment,validation,andtestingoftheDLalgorithmsforrecognitionandquantificationofNFTinanarrayoftauopathies.Thiswillallowustoapplythesetrainednetworksforlargerdisease-specificcohortsandtogeneratequantitativedataforclinicopathologicalcorrelations,aswellasformolecularandgeneticstudies,andenablefurtherdiagnosticandtherapeuticstrategies.
Materialsandmethods
Casematerial
De-identifiedautopsybraintissueswereobtainedfrom22representativeindividualswithAD,primaryage-relatedtauopathy(PART),PSP,andCTE[24](Table1).Thiscohortwasaconveniencesampleselectedbytheinvestigators.Weusedthefollowingselectioncriteria:
(i)clinical/pathological:well-characterizedclinicalcase,representativeofavarietyofpathognomonicdiagnostichistomorphologicalfeatures,andwithminimalorabsentneuropathologicalcomorbidities;(ii)technical:adequatelystainedtissuewithminimalornoartifacts.
Immunohistochemistry
Weusedstandardhistologicalcoronalsectionsfromformalin-fixedparaffin-embedded(FFPE)postmortembraintissue,representinghippocampalformationanddorsolateralprefrontalcortex.ForPARTandADcases,theimmunohistochemistry(IHC)ofallcaseswasperformedattheUniversityofTexasSouthwestern(UTSW)usinganti-phosphorylatedtauantibodies(AT8,Invitrogen,Waltham,MA)at1:200dilutionusingaLeicaBondIIIautomatedimmunostainer(LeicaMicrosystems,BuffaloGrove,IL).PSPandCTEcaseswereimmunostainedattheNeuropathologyResearchCoreatMountSinaiwithanti-phosphorylatedtauantibodies(AT8,Invitrogen)at1:2000dilutionusingaVentanaautostainer(RocheDiagnostics,Rotkreuz,Switzerland).
Slidedigitization
AllsectionsweredigitizedtoobtaindigitalWSI.ForPSPandCTE,WSIwereacquiredusingtheUltraFastScannerDigitalPathologySlideScanner(Philips,Amsterdam,Netherlands),whichscanshistologicalsamplesmountedonstandardglassslidesatx40
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page5
magnification(0.25μm/pixel)andsavesthemintheproprietaryiSyntaxformat.ForPARTandADcases,allslideswerescannedusinganAperioCSimagescanner(LeicaMicrosystems)atx20magnification(0.50μm/pixel)andsavedin.svsformat.AllimagesinproprietaryformatswerethenconvertedintoaGeoTIFFandstoredontheserverbehindthehospitalfirewallforinteractivedisplayovertheintranet.
Pathologicalannotations
WSIwereuploadedtothePreciseInformaticsPlatform(PIP)developedbytheCenterforComputationalandSystemsPathologyatMountSinai(MP,JK,JZ,andGF),whichallowsforthemanagementofthousandsofimageswithpathologistannotations.AuthorspreviouslyhaveappliedmachinelearningtoprostatecancerforGleasongrading[23,25],anditiscurrentlybeingusedinourCLIA-approvedlaboratory.Inaddition,PIPenablesgraphicsprocessingunit(GPU)-acceleratedDLforrapidvalidationandvisualizationofhowDLclassifiersperformindifferentscenarios(brainregions,celltypes,andstaining).
AnnotationsweregeneratedusingthePIPcollaborativeweb-baseduserinterfaceforoutlining(Fig.3).AnNFTwasoperationalizedasanobject,i.e.“foreground”,withcytoplasmicfinegranular,coarsegranular,orfibrillary/condensedAT8immunopositivitymorphologicallyconsistentwithaneuronbasedonthehistologicalcontext.Inaddition,extracellularAT8-positivestructuresmorphologicallyconsistentwiththeneuronalsomatodendriticcompartmentwerecountedasghosttangles.Partialneuriteslackingconnectiontothesomaorhillockwereexcluded.OtherAT8-positivestructuresincludingneuropilthreads,neuropilgranules/grains,andambiguousnon-neuronalphospho-taustainingwerecategorizedas“background”.Thetotalnumberof22WSIwasdividedinto14fortrainingandvalidation(modelselection),with8reservedasatestsetforperformanceevaluation.
Weconductedaconcordancestudytoassesstheinter-raterreliabilityusingacustominterfacewithinthePIPplatform.Atotalof471uniquepatchesofmixedhumanexpert-annotatedgroundtruthNFTsandAI-detectedfalsepositiveswereindependentlyassessedbythreeneuropathologists(MS,JFC,orCB)andcomparedusingaFleiss’kappastatistic.
Fullyconvolutionalnetwork(FCN)trainingandmodelselection
ThetrainingdatasetconsistedofWSIofsectionsfrom14subjects(Table1).Intotal,178representativerectangularregionsofinterests(ROI)wereselectedbytheinvestigatorsforanalysis.ThecriteriaforROIwereasfollows:(1)arepresentativecorticalareawithanadequateIHCofdiagnosticquality,(2)arepresentativevarietyofrecognizabledistincthistologicalAT8-stainedelements,and(3)intacttissuewithoutdetachmentorlargetissuefolds.AllNFTformswerecomputedtogether.ThetotalnumberofAT8-positiveNFTsofvariousmorphologiesrangingfrompre-tanglestomatureNFTsandghosttanglesusedforfullyconvolutionalneuralnetworktrainingandmodelselectionwas2221.Wefurtherextractedimagepatchesofsize512×512pixelsatx20bypartitioningtheROIs.Thetotalnumberofpatcheswas3177,comprising2414fromAperioscannedPARTandADWSIs,aswellas763fromPhilipsscannedCTEandPSPWSIs(Fig.4).Wefurtherassigned200patchesfromthisdatasettothevalidationset(formodelselection),withtheremainderusedfortraininganeuralnetworkclassifier.
Signaevskyetal. Page6
Fordeepconvolutionalneuralnetworkgeneration,weusedamodifiedversionofthefullyconvolutionalSegNetarchitecture(Fig.5)[26].Weusedthreespatialscales(numberofblockscontainingmultipleconvolutionlayersfollowedbyapoolinglayer)inthenetworktomodelthevisualcontextforNFT.Weightparametersfortheneuralnetworkaretheminimaforthepixel-wisebinarycrossentropyloss.Specifically,givenasetoftrainingexampleimagesIwithassociatedgroundtruthlabelsy,theFCNwithweightswgeneratespixelprobabilityateachlocationxforNFTobjectsaspj(x)=FCN(Ij(x),w),yieldingthe
followinglossfunction:
NL(w)=?∑
j=1
?
?∑··yj(x)logpi(x)+1?yj(x)log1?pi(x)
x
Thisdifferentiablelossfunctionisminimizedusingstochasticgradientdescent,whichperformsgradientupdatesonsmallbatchesofimages.Asetofgradientupdateiterationsthatutilizethecompletesetoftrainingimages,comprisingmultiplesmallbatches,iscalledanepoch.EachupdateiterationcanbecomputedefficientlyinparallelusingcommodityGPUhardware.WeusedthePyTorchsoftwarepackage(
)forbuildingourneuralnetworkmodel[27].
FCNtesting
WeappliedthetrainedSegNettoasetofeightnaiveWSIs,capturingarangeofscannerandstainingvariabilities.Forthese,weusedoneWSIforAD,twoforPART,threeforPSP,andtwoforCTE(Table1).ThetotalnumberoffullyannotatedrectangularROIoneightnaiveslidesrepresentingvariousnosologieswas50.ThetotalnumberofAT8positivestructuresamongthevariousmorphologieswas618.Positivefeatureswereusedtointerrogatenetworkperformance.
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Results
First,wecomputedtheoptimalweightparametersforNFTdetectionin200epochs.Networkweightswereupdatedtoreducetrainingloss,and,ateachupdate,wecomputedthelossonvalidationdata,whichisseparatefromtrainingdata,toensurethatperformancebetweenthetwodoesnotdiverge.Incaseswheretraininglossisreducedandvalidationlossisincreased,theestimatednetworkweightswillresultinamodeloverfittedtothetrainingset.Itwillperformwellontrainingdatabutwillhavesuboptimalperformanceonnoveldata.Weperformeddataaugmentationateachepochonarandomsubsetoftrainingsamples,whichincludescontrastshiftandgeometricchanges(flipsandrotations).Thisaugmentationstepprovidesaricherexampleforournetworkandreducesthelikelihoodofoverfitting.ThetrainingprocessforadeepneuralnetworkfordetectingNFTbyoptimizationofthecross-entropylossfunctionisshown(Fig.6).Optimizationwasperformedusingstochasticgradientdescentonthetrainingdata;selectingthemodelthatminimizestheseparatevalidationdataensuresthatthenetworkmodelcanbegeneralizedandappliedtounseenWSI.Theseresultsindicatethatournetworkweightsareoptimalandarenotoverfittedtothetrainingdata.
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page7
Thenetworkachieveshighsensitivityforbothvalidationandtestdata,withalowerprecisiononthetestsetcomparedtothevalidationsetasourcurrentnetworkgeneratesmorefalsepositivesinthenaivetestWSIs(Figs.7,8).Onvalidation,wehaveachievedrecall,precision,andF1scoreof0.91,0.80,and0.86,respectively.Ontesting,weachievedoverallrecall,precision,andF1scoreof0.92,0.72,and0.81,respectively.TheoverallFCNperformancewashigherinthehigh-tau-burdenAD/PARTcohortcomparedtothelow-to-moderatetauburdenPSP/CTEcohort.TheFCNwastrainedusingdatawhereAD/PARTishigherinproportion(Table2).TheFleiss’kappaforinter-raterreliabilitybetweenneuropathologistsdeterminedonacollectionofpatchesconsistingofamixofnetwork-definedfalsepositivesandtruepositiveswas0.78(p-value<0.0001)(Table3).
WetrainedandtestedourFCNonvariousstainingconditions.Thetruepositive(TP),falsepositive(FP),andfalsenegative(FN)valuesinhighbackgroundWSI(AperioscannedADandPARTcasesfromUTSW)were329,98,and14,respectively.TheTP,FP,andFNvaluesinlowbackgroundWSI(PhilipsscannedPSPandCTEcasesfromMSSM)were244,122,and45,respectively.OverallFCNperformancerepresentedwithanF1scorewashigherinthehigh-backgroundhigh-tau-burdenAD/PARTcohort(0.85)comparedtothelow-backgroundandlow-to-moderatetau-burdenPSP/CTEcohort(0.75)(Table4).
Theobjectdetectiontimeforasinglewholeslideimagerangedfrom10minto2h(averaging45min)usingoneNVIDIATitanXpGPU,withperformancedependingonthedigitalscanresolutionandmagnification.FullyautomaticdetectionofNFTsatthisperformancelevelwillenablelarge-scaleanalysisofWSI.
Discussion
Inthisstudy,wepresentanovelmachinelearning-basedmethodusingautomatedqualitativeandquantitativeassessmentofNFTonIHC-stainedpreparations.Thevalueofareproducible,rapid,andunbiasedapproachtoaugmentlabor-intensivemanualcountingofhistopathologicalfeaturesiswellrecognized.ImplementationofDLisacompellingcomputationaltoolthatcanaddressthisgap.DLenablestherapiddevelopmentofnewalgorithmsandtoolsbutrequiresthecreationofcomputationalinfrastructureandlargeneuropathologicaldatasetscontainingrichlyvariedhigh-qualityannotations.ThisisgreatlyfacilitatedbyacollaborativeannotationplatformthatutilizespowerfulGPUhardwareandrapidfeedbackfromcomputationalalgorithms.Wehaveachievedasignificantmilestonebydevelopingaweb-basedplatformfordatamanagement,visualexploration,objectoutlining,multi-userreview,andevaluationofDLalgorithmresultsinWSI.OurNFTclassifiercurrentlytakesanaverageof45minto1htocomputationallyidentifyandcountNFTonanentireWSI,illustratingthefeasibilityofapplyingthisapproachtolargedatasets.Toourknowledge,thisisamongthefirstframeworksavailableforbuildingandevaluatingDLalgorithmsusinglarge-scaleimagedatainneuropathology.
Ourlong-termgoalistodevelopacomprehensiveplatformthatcanbeutilizedacrosscontexts(e.g.,basicresearchlaboratories,brainbanks,andclinicalneuropathologylaboratories)withvariabilityinsamplingprotocols,tissuesectionquality,stainingmethodology,andpathologicalfeatures.Hence,inourcurrentstudy,severalstepswere
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page8
takentoincreasetheadaptabilityoftheneuralnetwork.Weusedmultiplebrainregions,aspectrumofdifferenttau-relateddiseases,avarietyofstainingconditions,andimagesacquiredontwodifferentslide-scanningplatforms.Thesestepshavelaidthegroundworktoprovideahighlyadaptableandrobusttangleclassifierforuseonimmunohistochemicallystainedsectionsthatcanbereadilyintegratedintoexistingclinicalneuropathologyandresearch.
DLalgorithmsarebasedonconceptsdevelopedinthe1940sandhavestartedbeingusedinmedicalimagingonlyrecently.UseofthesealgorithmsarebecomingpracticalduetothedevelopmentofGPUhardwareandtheyhavebeensuccessfullyappliedtosolvevariousimageclassification,detection,andsegmentationtasks[17,20].SeveralgroupsareapplyingsimilarAItechnologiestohistopathologyandhavecomparedthemtohumanexperts.Forexample,indermatologyandophthalmology,DLalgorithmswereabletooutperformahumanexpert[28,29].TherecentBreAstCancerHistologyimagesGrandChallengedemonstratedthatAIisabletopushforwardthestate-of-the-artaccuracy(87%)[22].
AnotherstudybyEstevaetal.utilizedapre-trainedGoogleNetInceptionv3CNNwith
~1.28millionpubliclyavailableimagesofskincancer[28].Thechallenge,however,liesintheacquisitionofasufficientnumberofrelevantgroundtruthexpertannotations.Further,evenwhenabodyofdataisannotatedbydomainexperts,labelnoisefromintra-andinter-observervariabilitycallingpresentsasignificantlimitingfactorindevelopingthealgorithms,andthereforearigorousqualitycontrolandexpertconsensusareneededfortrainingsets.Thus,publishedstudiesdemonstratethepromiseofAIinaidinganexpertinmakingmoreefficientdiagnoses.
OurSegNetfullyconvolutionalneuralnetworkhasreachedpracticallyusefullevelsofperformancebutcouldbeimproved.GiventhatwefocusedonNFT,performancewillbeenhancedwithlargerandmorevariedannotatedtrainingdatathatcaptureawiderrangeofneuropathologies(e.g.,amyloidplaques,Lewybodies,cerebrovasculardisease,etc.),stainingparameters,andanatomicalregions/sub-regions.Thelimitationsaremainlyattributedtofalsepositives,manyofwhichrepresenttauaccumulationinglialcells(datanotshown).WealsoobservedbetternetworkperformanceinAperio-scannedslides(ADandPARTcases),possiblyduetothelargeramountofannotationdatacomparedtoPhilips-scannedslides(CTEandPSPcases).Whilethenetworkperformanceismorerobustinnosologiesthatcontributedmoreannotationstothetrainingdataset,thiscanbeovercomebyincreasingthetotalnumberofgroundtruthannotationsandsaturatingthelearningcurve.
Infuturedisease-specificstudies,weplantouseexpandedneuroanatomicalsamplingpertinenttotargeteddiseaseentities.Forexample,itmaybehelpfultodifferentiateNFTfromdifferentbrainregionsordifferentsegmentsofoneregion,e.g.NFTsofhippocampusproperpyramidalneuronsandofdentategyrusgranuleneurons.Also,wecombinedallNFTsintoasinglecategory;however,thedifferentiationofpre-NFT,intracellularNFT,andghostNFTmayhelpimprovetheperformanceandprovidemoregranulardata.Finally,wefocusedourstudyonIHCstains,butabnormaltauandothe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地下洗衣店防水施工合同
- 2025年度智慧城市信息基礎(chǔ)設(shè)施建設(shè)合同3篇
- 2024年獨家授權(quán)合同樣本保障雙方權(quán)益
- 陵園服務(wù)保密承諾書模板
- 體育用品CEO招聘協(xié)議書
- 2024年電梯部件生產(chǎn)加工外包合同
- 商業(yè)廣場建設(shè)合同樣本
- 乒乓球館幕墻施工協(xié)議
- 碼頭貨物看護保安服務(wù)
- 2024年融資擔保協(xié)議印花稅優(yōu)惠政策及注意事項一
- HSE基礎(chǔ)知識培訓(xùn)
- 企業(yè)地震應(yīng)急預(yù)案樣本(三篇)
- 安徽省蚌埠市2023-2024學(xué)年高一上學(xué)期期末考試 地理 含答案
- 水生生物學(xué)智慧樹知到期末考試答案章節(jié)答案2024年寧波大學(xué)
- 陶瓷色料的技術(shù)PPT課件
- 幼兒園食品安全工作計劃四篇
- 課程設(shè)計YA32-350型四柱萬能液壓機液壓系統(tǒng)設(shè)計
- 提撈采油操作規(guī)程
- 中國工業(yè)數(shù)據(jù)庫介紹
- 弱電智能化設(shè)計服務(wù)建議書(共35頁)
- 中國銀監(jiān)會關(guān)于規(guī)范中長期貸款還款方式的通知
評論
0/150
提交評論