版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
/digital-health
Vol3April2021
e
PAGE
250
e
PAGE
259
/digital-health
Vol3April2021
Articles
Deeplearning-basedartificialintelligencemodeltoassistthyroidnodulediagnosisandmanagement:amulticentrediagnosticstudy
SuiPeng*,YihaoLiu*,WeimingLv*,LongzhongLiu*,QianZhou*,HongYang,JieRen,GuangjianLiu,XiaodongWang,XuehuaZhang,QiangDu,FangxingNie,GaoHuang,YuchenGuo,JieLi,JinyuLiang,HangtongHu,HanXiao,ZelongLiu,FenghuaLai,QiuyiZheng,HaiboWang,YanbingLi,ErikKAlexander,WeiWang,HaipengXiao
Summary
BackgroundStrategiesforintegratingartificialintelligence(AI)intothyroidnodulemanagementrequireadditionaldevelopmentandtesting.Wedevelopedadeep-learningAImodel(ThyNet)todifferentiatebetweenmalignanttumoursandbenignthyroidnodulesandaimedtoinvestigatehowThyNetcouldhelpradiologistsimprovediagnosticperformanceandavoidunnecessaryfineneedleaspiration.
MethodsThyNetwasdevelopedandtrainedon18049imagesof8339patients(trainingset)fromtwohospitals(theFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China,andSunYat-senUniversityCancerCenter,Guangzhou,China)andtestedon4305imagesof2775patients(totaltestset)fromsevenhospitals(theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China;theSixthAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;theGuangzhouArmyGeneralHospital,Guangzhou,China;theThirdAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;theFirstAffiliatedHospitalofSunYat-senUniversity;SunYat-senUniversityCancerCenter;andtheFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China)inthreestages.Allnodulesinthetrainingandtotaltestsetwerepathologicallyconfirmed.ThediagnosticperformanceofThyNetwasfirstcomparedwith12radiologists(testsetA);aThyNet-assistedstrategy,inwhichThyNetassisteddiagnosesmadebyradiologists,wasdevelopedtoimprovediagnosticperformanceofradiologistsusingimages(testsetB);theThyNetassistedstrategywasthentestedinareal-worldclinicalsetting(usingimagesandvideos;testsetC).Inasimulatedscenario,thenumberofunnecessaryfineneedleaspirationsavoidedbyThyNet-assistedstrategywascalculated.
FindingsTheareaunderthereceiveroperatingcharacteristiccurve(AUROC)foraccuratediagnosisofThyNet(0·922[95%CI0·910–0·934])wassignificantlyhigherthanthatoftheradiologists(0·839[0·834–0·844];p<0·0001).Furthermore,ThyNet-assistedstrategyimprovedthepooledAUROCoftheradiologistsfrom0·837(0·832–0·842)whendiagnosingwithoutThyNetto0·875(0·871–0·880;p<0·0001)withThyNetforreviewingimages,andfrom0·862(0·851–0·872)to0·873(0·863–0·883;p<0·0001)intheclinicaltest,whichusedimagesandvideos.Inthesimulatedscenario,thenumberoffineneedleaspirationsdecreasedfrom61·9%to35·2%usingtheThyNet-assistedstrategy,whilemissedmalignancydecreasedfrom18·9%to17·0%.
InterpretationTheThyNet-assistedstrategycansignificantlyimprovethediagnosticperformanceofradiologistsandhelpreduceunnecessaryfineneedleaspirationsforthyroidnodules.
FundingNationalNaturalScienceFoundationofChinaandGuangzhouScienceandTechnologyProject.
Copyright?2021TheAuthor(s).PublishedbyElsevierLtd.ThisisanOpenAccessarticleundertheCCBY-NC-ND
4.0license.
LancetDigitHealth2021;3:e250–59
*Contributedequallytothiswork
ClinicalTrialsUnit
(ProfSPengPhD,YLiuMD,
QZhouMS,ProfHWangMPH),DepartmentofEndocrinology(YLiu,FLaiMM,QZhengMD,ProfYLiPhD,ProfHXiaoPhD),DepartmentofMedicalUltrasonics,InstituteofDiagnosticandInterventionalUltrasound(YLiu,JLiangPhD,HHuMD,HanXiaoMD,
ZLiuMD,ProfWWang),andDepartmentofBreastandThyroidSurgery
(ProfWLvPhD,JLiPhD),
TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;DepartmentofUltrasound,SunYat-senUniversityCancerCenter,StateKeyLaboratoryofOncologyinSouthChina,Guangzhou,China(LLiuPhD);DepartmentofMedicalUltrasound,theFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China(ProfHYangPhD);DepartmentofMedicalUltrasonics,
theThirdAffiliatedHospitalofSunYat-senUniversity,
Guangzhou,China
(ProfJRenPhD);DepartmentofMedicalUltrasonics,theSixthAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China(GLiuPhD);DepartmentofMedicalUltrasonics,theFirstAffiliated
Introduction
Thyroidnodulesarefoundinupto68%ofasymp-tomaticadultsinthegeneralpopulation.1Approximately7–15%ofthyroidnodulesarethyroidcancer,whichisthemostrapidlyincreasingmalignancyinallpopulations.2Thelargenumberofthyroidnodules,withonlyafractionbeingcancerous,callsforareliablemethodtoaccuratelydifferentiatemalignantfrombenignnodules.
Routinedecisionmakingforpatientswiththyroidnodulesdependsonultrasoundorinvasivefineneedleaspiration.2However,theassessmentofultrasound
featuresistimeconsuming,subjective,andoftendependentonaradiologist’sexperienceandtheavailableultrasounddevices.3Ultrasoundconclusionsareofteninconsistentandevenwithfineneedleaspirations15–30%ofthesamplesstillyieldindeterminatecytologicalfindings.4Additionalrobustmethodsareneededtoimprovediagnosisandfineneedleaspirationstrategiestoadapttotheexponentialgrowthofpatientneedsandburdenonmedicalservices.
Artificialintelligence(AI)hasbeenreportedtomeetorexceedhumanexpertsinmedicalimaging.5–8Afew
HospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China(XWangMD);DepartmentofUltrasound,theGuangzhouArmyGeneralHospital,
Guangzhou,China
(XZhangMD);Xiaobaishiji,Beijing,China(QDuME,
FNieME,GHuangDE);InstituteforBrainandCognitiveSciences,TsinghuaUniversity,Beijing,China
(YGuoME);ThyroidSection,
Articles
Articles
Researchincontext
Evidencebeforethisstudy TheThyNet-assistedstrategynotonlyimprovedthe
WesearchedPubMedfromtheinceptionofthedatabaseto performanceofradiologistswhenreviewingimagesonly,
Sept20,2020,forresearcharticleswiththesearchterms“deep butalsowhenreviewingimagesandvideosinaclinicalsetting.learning”O(jiān)R“machinelearning”O(jiān)R“artificialintelligence”O(jiān)R OfnotethecombinationoftheAmericanCollegeof“convolutionalneuralnetwork”AND“thyroidcancer”O(jiān)R“thyroid RheumatologyThyroidImagingReportingandDataSystemnodule”O(jiān)R“thyroidcarcinoma”,withoutlanguagerestrictions. classificationwithAIassistanceimprovedthenegative
Weidentified15studiesonthedevelopmentandvalidationofpredictivevalueandpositivepredictivevalueofthyroidnoduleartificialintelligence(AI)modelsinthyroidnodulemanagement.differentiation,whichreducedthenumberofunnecessaryfineHowever,thesestudiescomparedtheperformanceofradiologistsneedleaspiration.
withthatoftheAImodel.Wefoundnopublicationsthat Implicationsofalltheavailableevidence
specificallyreportedhowdiagnosticdeep-learningormachine-
learningalgorithmscouldassistradiologistsperformancein ThyNet-assistedstrategycouldsignificantlyimprovethethyroidnodulemanagement.Theabsenceofmulticentretraining diagnosticperformanceofradiologistsandhelpreducethecohortsandasmallnumberofultrasounddevicesinprevious numberofunnecessaryfineneedleaspirationsforthyroidstudiesrestrictedtheirgeneralisabilityinclinicalpractice. nodules.Onthebasisofourfindings,AIdiagnosticprogrammes
shouldberolledouttoclinicalpracticeofthyroidnodule
Addedvalueofthisstudy management.Toourknowledge,thisstudyisthefirsttodevelopan
AI-assistedstrategyforthyroidnodulemanagement.
Brigham&Women’sHospital,HarvardMedicalSchool,
Boston,MA,USA
(ProfEKAlexanderMD)
Correspondenceto:ProfHaipengXiao,DepartmentofEndocrinology,TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou510080,
China
xiaohp@
or
ProfWeiWang,DepartmentofMedicalUltrasonics,InstituteofDiagnosticandInterventionalUltrasound,TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou510080,
China
wangw73@
or
ProfErikKAlexander,ThyroidSection,Brigham&Women’sHospital,HarvardMedicalSchool,Boston,MA02115,USA
ekalexander@
studieshavefocusedonacomparisonofthediagnosticperformanceofAIwithcliniciansinthyroidnoduledifferentiation.9–11Inourpreliminarystudy,amachinelearningsystemshowedabetterpredictivevalueformalignantthyroidnodulescomparedwithhumansusingAmericanCollegeofRheumatology(ACR)ThyroidImagingReportingandDataSystem(TI-RADS).7Theintroductionofdeeplearninginthyroidimaginghasalsoachievedabetterdiagnosticperformancethanexperiencedradiologists.12,13Previousstudiesapplyingdeep-learningalgorithmshavemainlyfocusedonthecomparisonofradiologistsanddeep-learningmodelsbyreadingultrasoundimages.However,inareal-worldsetting,thefinaldiagnosisshouldstillbemadebyradiologists.Therefore,evaluatingthediagnosticimprovementsprovidedbythecooperationbetweenradiologistsandAIsystemsismoresimilartotheclinicalsetting.Radiologistscouldimproveperformancebyreadingdynamicvideosinsteadofstaticimagesonly,butwhetheranAI-assistedmodelcanhelpradiologistsimprovediagnosticperformancebyprocessingbothimagesandvideosshouldbeinves-tigated.Moreover,fewstudiesdiscussedtheinfluenceofAIonfineneedleaspirationorthyroidectomytreatmentadvicegivenbyhealth-careprofessionals,leavingthisissuestillvague.
Wedevelopedadeep-learningAImodel(ThyNet)todifferentiatemalignanttumoursfrombenignthyroidnodules.WeinvestigatedwhetherradiologistscouldimprovetheirdiagnosticperformancewiththeassistanceoftheThyNetmodelwhenreadingultrasoundimagesandvideosandexploredthepotentialoftheThyNet-assistedstrategytohelpradiologistsavoidunnecessaryfineneedleaspirations.
Methods
Studydesignanddatasets
Thiswasamulticentre,diagnosticstudythatusedultrasoundimagesetsfromsevenhospitalsinChina.Patientsaged18yearsoldorolderwiththyroidnodulesatleast3mmindiameteridentifiedwithultrasoundwhohadadefinitivebenignormalignantpathologicalresult(surgicalspecimenorfineneedleaspiration[BethesdacategoryIIorVI])wereeligibleforinclusioninthetrainingsetandtestingsets.Thepathologicaldiagnosesweremadebytwopathologists,oneofwhomhadmorethan8years’experience.Allimageswereintiallyincluded,butlow-qualityultrasoundimages,suchassevereartifacts(eg,motionartifactsandspeedpropagationandrefractionartifacts)orlowimageresolution,wereexcludedafterscreening.
TheimagesofthetrainingsetwerecollectedfromtheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou,ChinaandSunYat-senUniversityCancerCenter,Guangzhou,China(18049imagesof8339patients).FortestsetA,2185imagesof1424patientswiththyroidnoduleswereenrolledfromfourindependenthospitals(theFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China;theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China;theSixthAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;andtheGuangzhouArmyGeneralHospital,Guangzhou,China).FortestsetB,1754imagesof1048patientswiththyroidnoduleswereenrolledfromtheFirstAffiliatedHospitalofSunYat-senUniversity,andtheThirdAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China.FortestsetC,366imagesof303patientswiththyroidnoduleswereenrolledfromtheFirstAffiliatedHospital
/digital-health
Vol3April2021
e
PAGE
252
e
PAGE
253
/digital-health
Vol3April2021
ofSunYat-senUniversity,SunYat-senUniversityCancerCenter,andtheFirstAffiliatedHospitalofGuangxiMedicalUniversity.
ThisstudywasapprovedbytheResearchEthicsCommitteeoftheFirstAffiliatedHospitalofSunYat-senUniversity.Informedconsentwaswaivedforretrospectivelycollectedultrasoundimages,whichwereannonymised.Writteninformedconsentwasobtainedfrompatientswhoseultrasoundimagesanddynamicvideoswereprospectivelycollected.
Outcomes
Theprimaryendpointofourstudywastheareaunderthereceiveroperatingcharacteristiccurve(AUROC)ofthyroidnodulediagnosis.Thesecondaryendpointsofourstudywereaccuracy,sensitivity,specificity,positivepredictivevalue,andnegativepredictivevalueofthyroidnodulediagnosis.Thepost-hocanalysisincludedthediagnosticaccuracyofThyNetindifferentpathologicalsubtypesandThyNet-assistedfineneedleaspirationstrategy.
Procedures
Forthetrainingset,ultrasoundimagesofconsecutivepatientswiththyroidnoduleswereretrospectivelyretrievedfromtheindividualthyroidimagingdatabaseattheFirstAffiliatedHospitalofSunYat-senUniversityandSunYat-senUniversityCancerCenter,betweenJan1,2009,andNov30,2018.Atotalof19312imagesfrom8339patientswereincludedinthetrainingset,with1263imagesexcludedduetopoorimagequality.
Therewasnooverlapbetweenpatientsinthetrainingandtestsetsandtherewasnooverlapbetweenthethreetestsubset.ThetestsetimagesforthecomparisonbetweenThyNetandradiologists(testsetA)andtheassessmentoftheThyNet-assistedstrategy(testsetB)wereretrospectivelyobtainedfromsixindependenthospitals(theFirstAffiliatedHospitalofGuangxiMedicalUniversity,theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,theSixthAffiliatedHospitalofSunYat-senUniversity,theGuangzhouArmyGeneralHospital,FirstAffiliatedHospitalofSunYat-senUniversity,andtheThirdAffiliatedHospitalofSunYat-senUniversity)betweenJan1,2009,andJuly30,2019.Intheclinicalsettingtest(testsetC),bothimagesanddynamicvideosofnoduleswereprospectivelycollectedfrominpatientsattheFirstAffiliatedHospitalofSunYat-senUniversity,SunYat-senUniversityCancerCenter,andFirstAffiliatedHospitalofGuangxiMedicalUniversityfromOct1toNov30,2019(appendixp4).Atotalof6587patientsinthetrainingsetand1956patientsinthetestsetswereconfirmedashavingadefinitivebenignormalignantpathologicalresultbasedonasurgicalspecimen.1752patientsinthetrainingsetand819patientsinthetestsetswereconfirmedashavingadefinitivebenignormalignantpathologicalresultbasedonfineneedleaspiration(BethesdacategoryIIorVI).
AllthyroidultrasoundimagesextractedfromthethyroidimagingdatabasewereconvertedintoaJPEGformat.Variousmodelsofultrasoundequipmentproducedby13differentmanufacturers(GEHealthcare,Chicago,IL,USA;Philips,Amsterdam,theNetherlands;Siemens,Munich,Germany;Canon,Tokyo,Japan;Samsung,Seoul,SouthKorea;Esaote,Genoa,Italy;Mindray,Huntingdon,UK;SonoScape,Shenzhen,China;Aloka,Wallingford,CT,USA;BKMedical,Peabody,MA,USA;Supersonic,Aix-en-Provence,France;Vinno,Suzhou,China;andHitachi,Tokyo,Japan)wereusedtogeneratetheultrasoundimages(appendixp8).Imagequalitycontrolwasdoneforthetrainingsetandtestsets.Forthequalitycontrolofultrasoundimages,allthyroidimageswerescreenedandlow-qualityimagescontainingsevereartifactsorsignificantimageresolutionreductionswereremoved.Thescreeningfortheimageswasdonebytworadiologists(HanXandZL)whohadatleast1yearofultrasoundexperience.Iftherewasnoconsensusregardingnodulelocationbetweentheimageandthepathologicalreport,theimagewasremoved.2345imagesfrom1424patientsintestsetAforthecomparisonbetweenThyNetandradiologistsmetthecriteria,with160imagesexcluded.1896imagesfrom1048patientsmettheinclusioncriteriaandwereusedintheassessmentoftheThyNet-assisteddiagnosticstrategy,with142imagesexcludedafterimagequalitycontrol(testsetB).401imagesfrom303patientsintestsetCmettheinclusioncriteriaandwereusedintheassessmentoftheThyNet-assisteddiagnosticstrategyinareal-worldsetting,with35imagesexcludedafterimagequalitycontrol.Alldataweredeidentified(includingretro-spectivleycollecteddataforthetrainingsets)beforethedevelopmentandevaluationofthemodel.
TheThyNetdeep-learningalgorithmwasspecificallydesignedtodiagnosemalignancyfromthyroidultrasoundimages.Itisacombinedarchitectureofthreenetworks:ResNet,ResNeXt,andDenseNet(appendixp5).ResNetusesresiduallearningblockstoreducetheeffectofgradientvanishing.ResNeXtisamodifiedversionofResNet,developedbyrepeatingabuildingblockthataggregatesasetoftransformationswiththesametopology.ResNeXtadditionallyintroducedtheconceptofsparsityandgroupconvolutiontoenhancetheabilityoftheAItolearnthesemanticinformationwithlessparameters.DenseNetisanewnetworkarchitecturethatconnectseachlayertoeveryotherlayerinafeed-forwardfashion.14DenseNetmakesthenetworkdeeperbutreducesthenumberofparametersandpreventsoverfitting.Thethreebranchesofnetworksweretrainedseparatelyonthesametrainingsetandassembledthroughamajorityvotealgorithm.Tosearchfortheoptimalweightsforeachnetworkbranchandgettheensembledoutput,weusedthebrute-forcesearchmethodviacross-testinthetrainingsets.Thefinalweightingratiosare0·40forResNet,0·35forResNeXt,and0·25forDenseNet.
SeeOnlineforappendix
Trainingset
Testingsets
RadiologistsvsThyNet RadiologistsassistedbyThyNet
Prospectivecohortinclinicalpractice
1st
2nd
1st
2nd Final
vs
DeeplearningbasedThyNet
18049images
5122malignantand3217benignpathologicallyprovennodules
12radiologistsread
2185images
12radiologistsread1754imageswithThyNetassistance
12radiologistsread366imagesandvideoswithThyNetassistance
Figure1:Studyprofile
Usingdatasetsfromtwocentres,ThyNetwastrainedtodifferentiatethyroidnodules.ThyNetwasthentestedonthreedatasetswithnooverlap(testsetsA–C).
First,diagnosticperformancebetweenradiologistsandThyNetbasedonstaticimageswascompared.Second,diagnosticperformanceofradiologistsbefore
(firstdiagnosis)andafter(seconddiagnosis)theassistancebyThyNetwasassessedbasedonstaticimages.Third,thefirstdiagnosisbasedonstaticimagesandtheseconddiagnosisbasedondynamicvideoswasrecorded.Then,withtheassistanceofThyNet,thefinaldiagnosiswasobtainedandcomparedwiththeindependentdiagnosesmadebyradiologistswithoutThyNet.
Formoreontheratingplatform
see
Thenoiseinformation(eg,paramatersoftheultrasounddevice),whichwasdistributedmainlyintheperipheralareasoftheoriginalimages,wasmanuallyremovedbyoneradiologist(HH).Theimageswereresizedto256×256pixelsbeforebeingcroppedto224×224pixels.Standardimagepreprocessing(clipping,flipping,androtating)fordeeplearningtogeneratealarger,morecomplicatedanddiversedatasettoimproveaccuracyandgeneralisabilitywasthendone.Augmentationwasdoneindependentlybeforeeachepochwitharandomlyselectedalgorithmofthethreeaugmentationalgorithms.Ourmodeltooktheaugmentedimages(byoneaugmentationalgorithmforeachepoch;input)andcalculatedtheprobabilityofeachimagebeingamalignantdiagnosis(output)aftertrainingacertainnumberofepochs(appendixp6).
Weusedtheweightsofeachnetwork,pretrainedonImageNet,astheinitialisationofourmodel’sweights.Thesametrainingparameterswereappliedtoeachnetworkbranch.Stochasticgradientdescentandcross-entropylosswereusedfornetworkweighttuningandalgorithmoptimisation.Theinitiallearningratewas0·01,whichdecreasedbyone-tenthevery100epochs;thefinallearningratewas0·0001.Topreventoverfitting,batchnormalisationwasusedandtheweightdecayratewassetto0·0005.Weusedabatchsizeof128imagesandaRectifiedLinearUnitactivationfunction.Heatmapsweregeneratedbythegradcammethods.
12radiologists,includingsixjuniorradiologists(1–3yearsofexperience)andsixseniorradiologists(>8yearsofexperience),reviewedthetworetrospectivedatasetsandtheprospectivedataset.Radiologistsweremaskedtothepathologicalconfirmationofthenodulestatusandresearchaimsbeforethereviewingprocess.Theindependentreviewprocesswasmadeonaweb-basedrating
platform
.ThereviewofeachlesionincludedassigningpointsbasedontheACRTI-RADS15categories(composition,echogenicity,shape,margin,andechogenicfoci)anddeterminingamalignantorbenigndiagnosis(appendixpp17–24).
ThyNetwastestedinthreestages(figure1).First,thediagnosticperformanceofThyNetwascomparedwithradiologists(withtestsetA);second,improvementinthediagnosticperformanceofradiologistswhenassistedbyThyNetwasevaluated(withtestsetB);andthird,theapplicationofThyNetinactualclinicalpracticewasinvestigated(withtestsetC).
Forthefirststage,ultrasoundimagesfromfourindependenthospitalswereusedtocomparetheperformanceofThyNetwithradiologists.Radiologistswereinvitedtoreviewtheimagesandmakediagnosesindependently.Areviewprocesswasmadeonaweb-basedratingplatform,whichintegratedthedataofallvalidationdatasets.ThereviewofeachlesionincludedthefollowingassigningpointsbasedonfiveACRTI-RADS18categories(composition,echogenicity,shape,margin,andechogenicfoci)anddeterminingamalignantorbenigndiagnosis.Alldataweredeidentifiedbeforetransfertotheinvestigators,andtheradiologistswerealsomaskedtothepathologicalreports.Theradio-logistswereinformedoftheirdiagnosticperformancecomparedwithThyNetbeforethedeep-learningsystemwasusedtoaidtheirdiagnosis.
RadiologistsintwohospitalsusedThyNettoaidthediagnosticprocess.Initialindependentreviewanddiagnosisweremadebyradiologistsalone.TheradiologistdiagnosiswascomparedwithareferencediagnosisfromThyNet.Ifthetwodidnotmatch,theradiologistscouldthenchoosetoadheretotheirdiagnosisoradoptthediagnosisfromThyNetasthefinaldiagnosis.Boththeinitialandfinalassisteddiagnosiswererecorded.
ThyNetwastestedinareal-worldclinicalsettinginthreehospitals.Initialindependentreviewanddiagnosisweremadeby12radiologistsreviewingstaticimagesandaseconddiagnosiswasobtainedbasedondynamicvideosofthenodule.The12radiologistswerethesameindividualsthatassessedtheimagesintestsetsAandB.ThefinaldiagnosiswasmadeaftertheThyNet-assistedreferencediagnosis.Thethreeindependentdiagnostic
recordsofinitial,second,andfinaldiagnosisforeachradiologistwererecorded.
Inclinicalpracticeofthyroidnodulemanagement,acrucialdecisionfollowingACRTI-RADSscoringis
whethersubsequentfineneedleaspirationisindicated.AccordingtoACRTI-RADS,nodulesthatscore2pointsorlessdonotneedfineneedleaspiration,inwhichcasetheprobabilityofbeingbenign(negativepredictive
Sensitivity
1·00
Seniorradiologists
0·95withAIassistanceJuniorradiologistwithAIassistance
0·90
Seniorradiologist
0·85
0·80
0·75
Juniorradiologist
Radiologists
withAIassistance
0·95Juniorradiologist
1·00SeniorradiologistwithAIassistance
Seniorradiologist
withAIassistance withdynamicvideos
Seniorradiologist
0·90
withstaticimages
Juniorradiologist
0·85
0·80
0·75
Juniorradiologistwithdynamicvideoswithstaticimages
InitialdiagnosiswithimageSeconddiagnosiswithvideoFinaldiagnosiswithAI
A
B
PooledAUROC=0·922 Individualradiologists
GXMUAUROC=0·922 SeniorradiologistsAUROC=0·857
GUCMAUROC=0·928 JuniorradiologistsAUROC=0·821
SYSU06AUROC=0·924 AllradiologistsAUROC=0·839
GAGHAUROC=0·921
1·0
0·8
0·6
0·4
0·2
0·95
0·90
0·85
0·80
0·75
0·70
0·0
C D
SeniorradiologistsAUROC=0·855 SeniorradiologistswithstaticimagesAUROC=0·837
SeniorradiologistswithAIassistanceAUROC=0·885 SeniorradiologistswithdynamicvideosAUROC=0·871
JuniorradiologistsAUROC=0·819 SeniorradiologistswithradiologistsAIassistanceAUROC=0·881
JuniorwithAIassistanceAUROC=0·866 JuniorradiologistswithstaticimagesAUROC=0·809JuniorradiologistswithdynamicvideosAUROC=0·853JuniorradiologistswithAIassistanceAUROC=0·866
1·0
0·8
0·6
0·4
0·2
0·0
1·0
0·8
0·6
0·4
0·2
01·0
0·8
0·6
0·4
0·2
0
Specificity Specificity
1·00
0·95
0·90
0·85
0·80
0·75
0·70
Sensitivity
Figure2:DiagnosticperformanceofThyNetandradiologistsinserialtestfordiscriminationofmalignantfrombenignthyroidnodules
AUROCstoevaluatediagnosticperformanceofThyNetinthetotaltestsetandeachexternalinstitutioninthefirsttestcomparingThyNetwithradiologists.
DiagnosticperformanceofThyNetcomparedwitheachradiologistinthetotaltestset.Rounddotsindicatediagnosticsensitivitiesandspecificitiesofindividualradiologists,thetriangleindicatesthepooledsensitivitiesandspecificitiesofalljuniorradiologists,thestarindicatesthepooledsensitivitiesandspecificitiesofallseniorradiologists,andthesquareindicatespooledsensitivitiesandspecificitiesofallradiologists.(C)DiagnosticperformanceofradiologistsaloneandradiologistsassistedbyThyNet.Rounddotsindicatesensitivitiesandspecificitiesofthefirstdiagnosis,andthesquaresindicatesensitivitiesandspecificitiesofseconddiagnosiswithThyNetassistance.(D)DiagnosticperformanceofradiologistsassistedbyThyNetinaclinicalsetting.Rounddotsindicatesensitivitiesandspecificitiesofthefirstdiagnosisbasedonstaticimages,trianglesindicatetheseconddiagnosisbasedondynamicvideos,andthesquaresindicatefinaldiagnosisofradiologistwithThyNetassistance.AI=artificialintelligence.AUROC=areaunderthereceiveroperatingcharacteristiccurve.GAGH=theGuangzhouArmyGeneralHospital.GUCM=theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine.GXMU=theFirstAffiliatedHospitalofGuangxiMedicalUniversity.ROC=receiveroperatingcharacteristiccurve.SYSU06=theSixthAffiliatedHospitalofSunYat-senUniversity.
AUROC(95%CI)
pvalue
Accuracy(95%CI)
p
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度合同公司管理制度與綠色供應(yīng)鏈管理合同3篇
- 2025年度礦山安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)合同3篇
- 二零二五年度城市綠化工程項目物資采購合同風(fēng)險識別與應(yīng)對3篇
- 標(biāo)題27:2025年度公司借用辦公場地協(xié)議3篇
- 二零二五年度股東在公司設(shè)立前知識產(chǎn)權(quán)歸屬協(xié)議3篇
- 二零二五年度全新出售房屋買賣綠色認(rèn)證合同3篇
- 二零二五年度共享辦公房屋無償使用及配套服務(wù)合同3篇
- 2025年農(nóng)村合作建房質(zhì)量安全監(jiān)督協(xié)議范本
- 二零二五年度電影主題公園運(yùn)營管理合同3篇
- 2025年度智能倉儲物流系統(tǒng)整體轉(zhuǎn)讓協(xié)議版3篇
- 附件五重點(diǎn)客戶服務(wù)體系
- JJF 1638-2017 多功能標(biāo)準(zhǔn)源校準(zhǔn)規(guī)范-(高清現(xiàn)行)
- 工業(yè)工程技術(shù)學(xué)生專業(yè)技能考核標(biāo)準(zhǔn)(高職)(高職)
- 生物化學(xué)期末考試題庫與答案
- 山東昌樂二中的“271高效課堂”
- 人教版高中物理新舊教材知識對比
- 國際結(jié)算期末復(fù)習(xí)試卷5套及參考答案
- 六年級上冊數(shù)學(xué)圓中方方中圓經(jīng)典題練習(xí)
- 現(xiàn)場組織機(jī)構(gòu)框圖及說明
- 《城鎮(zhèn)燃?xì)夤芾項l例》解讀
- X62W萬能銑床電氣原理圖解析(共18頁)
評論
0/150
提交評論