![基于深度學習的人工智能模型來輔助 甲狀腺結(jié)節(jié)的診斷和治療:多中心 診斷研究_第1頁](http://file4.renrendoc.com/view14/M0B/1D/09/wKhkGWYm7GeALh-DAAS-HHOFY2o450.jpg)
![基于深度學習的人工智能模型來輔助 甲狀腺結(jié)節(jié)的診斷和治療:多中心 診斷研究_第2頁](http://file4.renrendoc.com/view14/M0B/1D/09/wKhkGWYm7GeALh-DAAS-HHOFY2o4502.jpg)
![基于深度學習的人工智能模型來輔助 甲狀腺結(jié)節(jié)的診斷和治療:多中心 診斷研究_第3頁](http://file4.renrendoc.com/view14/M0B/1D/09/wKhkGWYm7GeALh-DAAS-HHOFY2o4503.jpg)
![基于深度學習的人工智能模型來輔助 甲狀腺結(jié)節(jié)的診斷和治療:多中心 診斷研究_第4頁](http://file4.renrendoc.com/view14/M0B/1D/09/wKhkGWYm7GeALh-DAAS-HHOFY2o4504.jpg)
![基于深度學習的人工智能模型來輔助 甲狀腺結(jié)節(jié)的診斷和治療:多中心 診斷研究_第5頁](http://file4.renrendoc.com/view14/M0B/1D/09/wKhkGWYm7GeALh-DAAS-HHOFY2o4505.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
/digital-health
Vol3April2021
e
PAGE
250
e
PAGE
259
/digital-health
Vol3April2021
Articles
Deeplearning-basedartificialintelligencemodeltoassistthyroidnodulediagnosisandmanagement:amulticentrediagnosticstudy
SuiPeng*,YihaoLiu*,WeimingLv*,LongzhongLiu*,QianZhou*,HongYang,JieRen,GuangjianLiu,XiaodongWang,XuehuaZhang,QiangDu,FangxingNie,GaoHuang,YuchenGuo,JieLi,JinyuLiang,HangtongHu,HanXiao,ZelongLiu,FenghuaLai,QiuyiZheng,HaiboWang,YanbingLi,ErikKAlexander,WeiWang,HaipengXiao
Summary
BackgroundStrategiesforintegratingartificialintelligence(AI)intothyroidnodulemanagementrequireadditionaldevelopmentandtesting.Wedevelopedadeep-learningAImodel(ThyNet)todifferentiatebetweenmalignanttumoursandbenignthyroidnodulesandaimedtoinvestigatehowThyNetcouldhelpradiologistsimprovediagnosticperformanceandavoidunnecessaryfineneedleaspiration.
MethodsThyNetwasdevelopedandtrainedon18049imagesof8339patients(trainingset)fromtwohospitals(theFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China,andSunYat-senUniversityCancerCenter,Guangzhou,China)andtestedon4305imagesof2775patients(totaltestset)fromsevenhospitals(theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China;theSixthAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;theGuangzhouArmyGeneralHospital,Guangzhou,China;theThirdAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;theFirstAffiliatedHospitalofSunYat-senUniversity;SunYat-senUniversityCancerCenter;andtheFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China)inthreestages.Allnodulesinthetrainingandtotaltestsetwerepathologicallyconfirmed.ThediagnosticperformanceofThyNetwasfirstcomparedwith12radiologists(testsetA);aThyNet-assistedstrategy,inwhichThyNetassisteddiagnosesmadebyradiologists,wasdevelopedtoimprovediagnosticperformanceofradiologistsusingimages(testsetB);theThyNetassistedstrategywasthentestedinareal-worldclinicalsetting(usingimagesandvideos;testsetC).Inasimulatedscenario,thenumberofunnecessaryfineneedleaspirationsavoidedbyThyNet-assistedstrategywascalculated.
FindingsTheareaunderthereceiveroperatingcharacteristiccurve(AUROC)foraccuratediagnosisofThyNet(0·922[95%CI0·910–0·934])wassignificantlyhigherthanthatoftheradiologists(0·839[0·834–0·844];p<0·0001).Furthermore,ThyNet-assistedstrategyimprovedthepooledAUROCoftheradiologistsfrom0·837(0·832–0·842)whendiagnosingwithoutThyNetto0·875(0·871–0·880;p<0·0001)withThyNetforreviewingimages,andfrom0·862(0·851–0·872)to0·873(0·863–0·883;p<0·0001)intheclinicaltest,whichusedimagesandvideos.Inthesimulatedscenario,thenumberoffineneedleaspirationsdecreasedfrom61·9%to35·2%usingtheThyNet-assistedstrategy,whilemissedmalignancydecreasedfrom18·9%to17·0%.
InterpretationTheThyNet-assistedstrategycansignificantlyimprovethediagnosticperformanceofradiologistsandhelpreduceunnecessaryfineneedleaspirationsforthyroidnodules.
FundingNationalNaturalScienceFoundationofChinaandGuangzhouScienceandTechnologyProject.
Copyright?2021TheAuthor(s).PublishedbyElsevierLtd.ThisisanOpenAccessarticleundertheCCBY-NC-ND
4.0license.
LancetDigitHealth2021;3:e250–59
*Contributedequallytothiswork
ClinicalTrialsUnit
(ProfSPengPhD,YLiuMD,
QZhouMS,ProfHWangMPH),DepartmentofEndocrinology(YLiu,FLaiMM,QZhengMD,ProfYLiPhD,ProfHXiaoPhD),DepartmentofMedicalUltrasonics,InstituteofDiagnosticandInterventionalUltrasound(YLiu,JLiangPhD,HHuMD,HanXiaoMD,
ZLiuMD,ProfWWang),andDepartmentofBreastandThyroidSurgery
(ProfWLvPhD,JLiPhD),
TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;DepartmentofUltrasound,SunYat-senUniversityCancerCenter,StateKeyLaboratoryofOncologyinSouthChina,Guangzhou,China(LLiuPhD);DepartmentofMedicalUltrasound,theFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China(ProfHYangPhD);DepartmentofMedicalUltrasonics,
theThirdAffiliatedHospitalofSunYat-senUniversity,
Guangzhou,China
(ProfJRenPhD);DepartmentofMedicalUltrasonics,theSixthAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China(GLiuPhD);DepartmentofMedicalUltrasonics,theFirstAffiliated
Introduction
Thyroidnodulesarefoundinupto68%ofasymp-tomaticadultsinthegeneralpopulation.1Approximately7–15%ofthyroidnodulesarethyroidcancer,whichisthemostrapidlyincreasingmalignancyinallpopulations.2Thelargenumberofthyroidnodules,withonlyafractionbeingcancerous,callsforareliablemethodtoaccuratelydifferentiatemalignantfrombenignnodules.
Routinedecisionmakingforpatientswiththyroidnodulesdependsonultrasoundorinvasivefineneedleaspiration.2However,theassessmentofultrasound
featuresistimeconsuming,subjective,andoftendependentonaradiologist’sexperienceandtheavailableultrasounddevices.3Ultrasoundconclusionsareofteninconsistentandevenwithfineneedleaspirations15–30%ofthesamplesstillyieldindeterminatecytologicalfindings.4Additionalrobustmethodsareneededtoimprovediagnosisandfineneedleaspirationstrategiestoadapttotheexponentialgrowthofpatientneedsandburdenonmedicalservices.
Artificialintelligence(AI)hasbeenreportedtomeetorexceedhumanexpertsinmedicalimaging.5–8Afew
HospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China(XWangMD);DepartmentofUltrasound,theGuangzhouArmyGeneralHospital,
Guangzhou,China
(XZhangMD);Xiaobaishiji,Beijing,China(QDuME,
FNieME,GHuangDE);InstituteforBrainandCognitiveSciences,TsinghuaUniversity,Beijing,China
(YGuoME);ThyroidSection,
Articles
Articles
Researchincontext
Evidencebeforethisstudy TheThyNet-assistedstrategynotonlyimprovedthe
WesearchedPubMedfromtheinceptionofthedatabaseto performanceofradiologistswhenreviewingimagesonly,
Sept20,2020,forresearcharticleswiththesearchterms“deep butalsowhenreviewingimagesandvideosinaclinicalsetting.learning”O(jiān)R“machinelearning”O(jiān)R“artificialintelligence”O(jiān)R OfnotethecombinationoftheAmericanCollegeof“convolutionalneuralnetwork”AND“thyroidcancer”O(jiān)R“thyroid RheumatologyThyroidImagingReportingandDataSystemnodule”O(jiān)R“thyroidcarcinoma”,withoutlanguagerestrictions. classificationwithAIassistanceimprovedthenegative
Weidentified15studiesonthedevelopmentandvalidationofpredictivevalueandpositivepredictivevalueofthyroidnoduleartificialintelligence(AI)modelsinthyroidnodulemanagement.differentiation,whichreducedthenumberofunnecessaryfineHowever,thesestudiescomparedtheperformanceofradiologistsneedleaspiration.
withthatoftheAImodel.Wefoundnopublicationsthat Implicationsofalltheavailableevidence
specificallyreportedhowdiagnosticdeep-learningormachine-
learningalgorithmscouldassistradiologistsperformancein ThyNet-assistedstrategycouldsignificantlyimprovethethyroidnodulemanagement.Theabsenceofmulticentretraining diagnosticperformanceofradiologistsandhelpreducethecohortsandasmallnumberofultrasounddevicesinprevious numberofunnecessaryfineneedleaspirationsforthyroidstudiesrestrictedtheirgeneralisabilityinclinicalpractice. nodules.Onthebasisofourfindings,AIdiagnosticprogrammes
shouldberolledouttoclinicalpracticeofthyroidnodule
Addedvalueofthisstudy management.Toourknowledge,thisstudyisthefirsttodevelopan
AI-assistedstrategyforthyroidnodulemanagement.
Brigham&Women’sHospital,HarvardMedicalSchool,
Boston,MA,USA
(ProfEKAlexanderMD)
Correspondenceto:ProfHaipengXiao,DepartmentofEndocrinology,TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou510080,
China
xiaohp@
or
ProfWeiWang,DepartmentofMedicalUltrasonics,InstituteofDiagnosticandInterventionalUltrasound,TheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou510080,
China
wangw73@
or
ProfErikKAlexander,ThyroidSection,Brigham&Women’sHospital,HarvardMedicalSchool,Boston,MA02115,USA
ekalexander@
studieshavefocusedonacomparisonofthediagnosticperformanceofAIwithcliniciansinthyroidnoduledifferentiation.9–11Inourpreliminarystudy,amachinelearningsystemshowedabetterpredictivevalueformalignantthyroidnodulescomparedwithhumansusingAmericanCollegeofRheumatology(ACR)ThyroidImagingReportingandDataSystem(TI-RADS).7Theintroductionofdeeplearninginthyroidimaginghasalsoachievedabetterdiagnosticperformancethanexperiencedradiologists.12,13Previousstudiesapplyingdeep-learningalgorithmshavemainlyfocusedonthecomparisonofradiologistsanddeep-learningmodelsbyreadingultrasoundimages.However,inareal-worldsetting,thefinaldiagnosisshouldstillbemadebyradiologists.Therefore,evaluatingthediagnosticimprovementsprovidedbythecooperationbetweenradiologistsandAIsystemsismoresimilartotheclinicalsetting.Radiologistscouldimproveperformancebyreadingdynamicvideosinsteadofstaticimagesonly,butwhetheranAI-assistedmodelcanhelpradiologistsimprovediagnosticperformancebyprocessingbothimagesandvideosshouldbeinves-tigated.Moreover,fewstudiesdiscussedtheinfluenceofAIonfineneedleaspirationorthyroidectomytreatmentadvicegivenbyhealth-careprofessionals,leavingthisissuestillvague.
Wedevelopedadeep-learningAImodel(ThyNet)todifferentiatemalignanttumoursfrombenignthyroidnodules.WeinvestigatedwhetherradiologistscouldimprovetheirdiagnosticperformancewiththeassistanceoftheThyNetmodelwhenreadingultrasoundimagesandvideosandexploredthepotentialoftheThyNet-assistedstrategytohelpradiologistsavoidunnecessaryfineneedleaspirations.
Methods
Studydesignanddatasets
Thiswasamulticentre,diagnosticstudythatusedultrasoundimagesetsfromsevenhospitalsinChina.Patientsaged18yearsoldorolderwiththyroidnodulesatleast3mmindiameteridentifiedwithultrasoundwhohadadefinitivebenignormalignantpathologicalresult(surgicalspecimenorfineneedleaspiration[BethesdacategoryIIorVI])wereeligibleforinclusioninthetrainingsetandtestingsets.Thepathologicaldiagnosesweremadebytwopathologists,oneofwhomhadmorethan8years’experience.Allimageswereintiallyincluded,butlow-qualityultrasoundimages,suchassevereartifacts(eg,motionartifactsandspeedpropagationandrefractionartifacts)orlowimageresolution,wereexcludedafterscreening.
TheimagesofthetrainingsetwerecollectedfromtheFirstAffiliatedHospitalofSunYat-senUniversity,Guangzhou,ChinaandSunYat-senUniversityCancerCenter,Guangzhou,China(18049imagesof8339patients).FortestsetA,2185imagesof1424patientswiththyroidnoduleswereenrolledfromfourindependenthospitals(theFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,China;theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,Guangzhou,China;theSixthAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China;andtheGuangzhouArmyGeneralHospital,Guangzhou,China).FortestsetB,1754imagesof1048patientswiththyroidnoduleswereenrolledfromtheFirstAffiliatedHospitalofSunYat-senUniversity,andtheThirdAffiliatedHospitalofSunYat-senUniversity,Guangzhou,China.FortestsetC,366imagesof303patientswiththyroidnoduleswereenrolledfromtheFirstAffiliatedHospital
/digital-health
Vol3April2021
e
PAGE
252
e
PAGE
253
/digital-health
Vol3April2021
ofSunYat-senUniversity,SunYat-senUniversityCancerCenter,andtheFirstAffiliatedHospitalofGuangxiMedicalUniversity.
ThisstudywasapprovedbytheResearchEthicsCommitteeoftheFirstAffiliatedHospitalofSunYat-senUniversity.Informedconsentwaswaivedforretrospectivelycollectedultrasoundimages,whichwereannonymised.Writteninformedconsentwasobtainedfrompatientswhoseultrasoundimagesanddynamicvideoswereprospectivelycollected.
Outcomes
Theprimaryendpointofourstudywastheareaunderthereceiveroperatingcharacteristiccurve(AUROC)ofthyroidnodulediagnosis.Thesecondaryendpointsofourstudywereaccuracy,sensitivity,specificity,positivepredictivevalue,andnegativepredictivevalueofthyroidnodulediagnosis.Thepost-hocanalysisincludedthediagnosticaccuracyofThyNetindifferentpathologicalsubtypesandThyNet-assistedfineneedleaspirationstrategy.
Procedures
Forthetrainingset,ultrasoundimagesofconsecutivepatientswiththyroidnoduleswereretrospectivelyretrievedfromtheindividualthyroidimagingdatabaseattheFirstAffiliatedHospitalofSunYat-senUniversityandSunYat-senUniversityCancerCenter,betweenJan1,2009,andNov30,2018.Atotalof19312imagesfrom8339patientswereincludedinthetrainingset,with1263imagesexcludedduetopoorimagequality.
Therewasnooverlapbetweenpatientsinthetrainingandtestsetsandtherewasnooverlapbetweenthethreetestsubset.ThetestsetimagesforthecomparisonbetweenThyNetandradiologists(testsetA)andtheassessmentoftheThyNet-assistedstrategy(testsetB)wereretrospectivelyobtainedfromsixindependenthospitals(theFirstAffiliatedHospitalofGuangxiMedicalUniversity,theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,theSixthAffiliatedHospitalofSunYat-senUniversity,theGuangzhouArmyGeneralHospital,FirstAffiliatedHospitalofSunYat-senUniversity,andtheThirdAffiliatedHospitalofSunYat-senUniversity)betweenJan1,2009,andJuly30,2019.Intheclinicalsettingtest(testsetC),bothimagesanddynamicvideosofnoduleswereprospectivelycollectedfrominpatientsattheFirstAffiliatedHospitalofSunYat-senUniversity,SunYat-senUniversityCancerCenter,andFirstAffiliatedHospitalofGuangxiMedicalUniversityfromOct1toNov30,2019(appendixp4).Atotalof6587patientsinthetrainingsetand1956patientsinthetestsetswereconfirmedashavingadefinitivebenignormalignantpathologicalresultbasedonasurgicalspecimen.1752patientsinthetrainingsetand819patientsinthetestsetswereconfirmedashavingadefinitivebenignormalignantpathologicalresultbasedonfineneedleaspiration(BethesdacategoryIIorVI).
AllthyroidultrasoundimagesextractedfromthethyroidimagingdatabasewereconvertedintoaJPEGformat.Variousmodelsofultrasoundequipmentproducedby13differentmanufacturers(GEHealthcare,Chicago,IL,USA;Philips,Amsterdam,theNetherlands;Siemens,Munich,Germany;Canon,Tokyo,Japan;Samsung,Seoul,SouthKorea;Esaote,Genoa,Italy;Mindray,Huntingdon,UK;SonoScape,Shenzhen,China;Aloka,Wallingford,CT,USA;BKMedical,Peabody,MA,USA;Supersonic,Aix-en-Provence,France;Vinno,Suzhou,China;andHitachi,Tokyo,Japan)wereusedtogeneratetheultrasoundimages(appendixp8).Imagequalitycontrolwasdoneforthetrainingsetandtestsets.Forthequalitycontrolofultrasoundimages,allthyroidimageswerescreenedandlow-qualityimagescontainingsevereartifactsorsignificantimageresolutionreductionswereremoved.Thescreeningfortheimageswasdonebytworadiologists(HanXandZL)whohadatleast1yearofultrasoundexperience.Iftherewasnoconsensusregardingnodulelocationbetweentheimageandthepathologicalreport,theimagewasremoved.2345imagesfrom1424patientsintestsetAforthecomparisonbetweenThyNetandradiologistsmetthecriteria,with160imagesexcluded.1896imagesfrom1048patientsmettheinclusioncriteriaandwereusedintheassessmentoftheThyNet-assisteddiagnosticstrategy,with142imagesexcludedafterimagequalitycontrol(testsetB).401imagesfrom303patientsintestsetCmettheinclusioncriteriaandwereusedintheassessmentoftheThyNet-assisteddiagnosticstrategyinareal-worldsetting,with35imagesexcludedafterimagequalitycontrol.Alldataweredeidentified(includingretro-spectivleycollecteddataforthetrainingsets)beforethedevelopmentandevaluationofthemodel.
TheThyNetdeep-learningalgorithmwasspecificallydesignedtodiagnosemalignancyfromthyroidultrasoundimages.Itisacombinedarchitectureofthreenetworks:ResNet,ResNeXt,andDenseNet(appendixp5).ResNetusesresiduallearningblockstoreducetheeffectofgradientvanishing.ResNeXtisamodifiedversionofResNet,developedbyrepeatingabuildingblockthataggregatesasetoftransformationswiththesametopology.ResNeXtadditionallyintroducedtheconceptofsparsityandgroupconvolutiontoenhancetheabilityoftheAItolearnthesemanticinformationwithlessparameters.DenseNetisanewnetworkarchitecturethatconnectseachlayertoeveryotherlayerinafeed-forwardfashion.14DenseNetmakesthenetworkdeeperbutreducesthenumberofparametersandpreventsoverfitting.Thethreebranchesofnetworksweretrainedseparatelyonthesametrainingsetandassembledthroughamajorityvotealgorithm.Tosearchfortheoptimalweightsforeachnetworkbranchandgettheensembledoutput,weusedthebrute-forcesearchmethodviacross-testinthetrainingsets.Thefinalweightingratiosare0·40forResNet,0·35forResNeXt,and0·25forDenseNet.
SeeOnlineforappendix
Trainingset
Testingsets
RadiologistsvsThyNet RadiologistsassistedbyThyNet
Prospectivecohortinclinicalpractice
1st
2nd
1st
2nd Final
vs
DeeplearningbasedThyNet
18049images
5122malignantand3217benignpathologicallyprovennodules
12radiologistsread
2185images
12radiologistsread1754imageswithThyNetassistance
12radiologistsread366imagesandvideoswithThyNetassistance
Figure1:Studyprofile
Usingdatasetsfromtwocentres,ThyNetwastrainedtodifferentiatethyroidnodules.ThyNetwasthentestedonthreedatasetswithnooverlap(testsetsA–C).
First,diagnosticperformancebetweenradiologistsandThyNetbasedonstaticimageswascompared.Second,diagnosticperformanceofradiologistsbefore
(firstdiagnosis)andafter(seconddiagnosis)theassistancebyThyNetwasassessedbasedonstaticimages.Third,thefirstdiagnosisbasedonstaticimagesandtheseconddiagnosisbasedondynamicvideoswasrecorded.Then,withtheassistanceofThyNet,thefinaldiagnosiswasobtainedandcomparedwiththeindependentdiagnosesmadebyradiologistswithoutThyNet.
Formoreontheratingplatform
see
Thenoiseinformation(eg,paramatersoftheultrasounddevice),whichwasdistributedmainlyintheperipheralareasoftheoriginalimages,wasmanuallyremovedbyoneradiologist(HH).Theimageswereresizedto256×256pixelsbeforebeingcroppedto224×224pixels.Standardimagepreprocessing(clipping,flipping,androtating)fordeeplearningtogeneratealarger,morecomplicatedanddiversedatasettoimproveaccuracyandgeneralisabilitywasthendone.Augmentationwasdoneindependentlybeforeeachepochwitharandomlyselectedalgorithmofthethreeaugmentationalgorithms.Ourmodeltooktheaugmentedimages(byoneaugmentationalgorithmforeachepoch;input)andcalculatedtheprobabilityofeachimagebeingamalignantdiagnosis(output)aftertrainingacertainnumberofepochs(appendixp6).
Weusedtheweightsofeachnetwork,pretrainedonImageNet,astheinitialisationofourmodel’sweights.Thesametrainingparameterswereappliedtoeachnetworkbranch.Stochasticgradientdescentandcross-entropylosswereusedfornetworkweighttuningandalgorithmoptimisation.Theinitiallearningratewas0·01,whichdecreasedbyone-tenthevery100epochs;thefinallearningratewas0·0001.Topreventoverfitting,batchnormalisationwasusedandtheweightdecayratewassetto0·0005.Weusedabatchsizeof128imagesandaRectifiedLinearUnitactivationfunction.Heatmapsweregeneratedbythegradcammethods.
12radiologists,includingsixjuniorradiologists(1–3yearsofexperience)andsixseniorradiologists(>8yearsofexperience),reviewedthetworetrospectivedatasetsandtheprospectivedataset.Radiologistsweremaskedtothepathologicalconfirmationofthenodulestatusandresearchaimsbeforethereviewingprocess.Theindependentreviewprocesswasmadeonaweb-basedrating
platform
.ThereviewofeachlesionincludedassigningpointsbasedontheACRTI-RADS15categories(composition,echogenicity,shape,margin,andechogenicfoci)anddeterminingamalignantorbenigndiagnosis(appendixpp17–24).
ThyNetwastestedinthreestages(figure1).First,thediagnosticperformanceofThyNetwascomparedwithradiologists(withtestsetA);second,improvementinthediagnosticperformanceofradiologistswhenassistedbyThyNetwasevaluated(withtestsetB);andthird,theapplicationofThyNetinactualclinicalpracticewasinvestigated(withtestsetC).
Forthefirststage,ultrasoundimagesfromfourindependenthospitalswereusedtocomparetheperformanceofThyNetwithradiologists.Radiologistswereinvitedtoreviewtheimagesandmakediagnosesindependently.Areviewprocesswasmadeonaweb-basedratingplatform,whichintegratedthedataofallvalidationdatasets.ThereviewofeachlesionincludedthefollowingassigningpointsbasedonfiveACRTI-RADS18categories(composition,echogenicity,shape,margin,andechogenicfoci)anddeterminingamalignantorbenigndiagnosis.Alldataweredeidentifiedbeforetransfertotheinvestigators,andtheradiologistswerealsomaskedtothepathologicalreports.Theradio-logistswereinformedoftheirdiagnosticperformancecomparedwithThyNetbeforethedeep-learningsystemwasusedtoaidtheirdiagnosis.
RadiologistsintwohospitalsusedThyNettoaidthediagnosticprocess.Initialindependentreviewanddiagnosisweremadebyradiologistsalone.TheradiologistdiagnosiswascomparedwithareferencediagnosisfromThyNet.Ifthetwodidnotmatch,theradiologistscouldthenchoosetoadheretotheirdiagnosisoradoptthediagnosisfromThyNetasthefinaldiagnosis.Boththeinitialandfinalassisteddiagnosiswererecorded.
ThyNetwastestedinareal-worldclinicalsettinginthreehospitals.Initialindependentreviewanddiagnosisweremadeby12radiologistsreviewingstaticimagesandaseconddiagnosiswasobtainedbasedondynamicvideosofthenodule.The12radiologistswerethesameindividualsthatassessedtheimagesintestsetsAandB.ThefinaldiagnosiswasmadeaftertheThyNet-assistedreferencediagnosis.Thethreeindependentdiagnostic
recordsofinitial,second,andfinaldiagnosisforeachradiologistwererecorded.
Inclinicalpracticeofthyroidnodulemanagement,acrucialdecisionfollowingACRTI-RADSscoringis
whethersubsequentfineneedleaspirationisindicated.AccordingtoACRTI-RADS,nodulesthatscore2pointsorlessdonotneedfineneedleaspiration,inwhichcasetheprobabilityofbeingbenign(negativepredictive
Sensitivity
1·00
Seniorradiologists
0·95withAIassistanceJuniorradiologistwithAIassistance
0·90
Seniorradiologist
0·85
0·80
0·75
Juniorradiologist
Radiologists
withAIassistance
0·95Juniorradiologist
1·00SeniorradiologistwithAIassistance
Seniorradiologist
withAIassistance withdynamicvideos
Seniorradiologist
0·90
withstaticimages
Juniorradiologist
0·85
0·80
0·75
Juniorradiologistwithdynamicvideoswithstaticimages
InitialdiagnosiswithimageSeconddiagnosiswithvideoFinaldiagnosiswithAI
A
B
PooledAUROC=0·922 Individualradiologists
GXMUAUROC=0·922 SeniorradiologistsAUROC=0·857
GUCMAUROC=0·928 JuniorradiologistsAUROC=0·821
SYSU06AUROC=0·924 AllradiologistsAUROC=0·839
GAGHAUROC=0·921
1·0
0·8
0·6
0·4
0·2
0·95
0·90
0·85
0·80
0·75
0·70
0·0
C D
SeniorradiologistsAUROC=0·855 SeniorradiologistswithstaticimagesAUROC=0·837
SeniorradiologistswithAIassistanceAUROC=0·885 SeniorradiologistswithdynamicvideosAUROC=0·871
JuniorradiologistsAUROC=0·819 SeniorradiologistswithradiologistsAIassistanceAUROC=0·881
JuniorwithAIassistanceAUROC=0·866 JuniorradiologistswithstaticimagesAUROC=0·809JuniorradiologistswithdynamicvideosAUROC=0·853JuniorradiologistswithAIassistanceAUROC=0·866
1·0
0·8
0·6
0·4
0·2
0·0
1·0
0·8
0·6
0·4
0·2
01·0
0·8
0·6
0·4
0·2
0
Specificity Specificity
1·00
0·95
0·90
0·85
0·80
0·75
0·70
Sensitivity
Figure2:DiagnosticperformanceofThyNetandradiologistsinserialtestfordiscriminationofmalignantfrombenignthyroidnodules
AUROCstoevaluatediagnosticperformanceofThyNetinthetotaltestsetandeachexternalinstitutioninthefirsttestcomparingThyNetwithradiologists.
DiagnosticperformanceofThyNetcomparedwitheachradiologistinthetotaltestset.Rounddotsindicatediagnosticsensitivitiesandspecificitiesofindividualradiologists,thetriangleindicatesthepooledsensitivitiesandspecificitiesofalljuniorradiologists,thestarindicatesthepooledsensitivitiesandspecificitiesofallseniorradiologists,andthesquareindicatespooledsensitivitiesandspecificitiesofallradiologists.(C)DiagnosticperformanceofradiologistsaloneandradiologistsassistedbyThyNet.Rounddotsindicatesensitivitiesandspecificitiesofthefirstdiagnosis,andthesquaresindicatesensitivitiesandspecificitiesofseconddiagnosiswithThyNetassistance.(D)DiagnosticperformanceofradiologistsassistedbyThyNetinaclinicalsetting.Rounddotsindicatesensitivitiesandspecificitiesofthefirstdiagnosisbasedonstaticimages,trianglesindicatetheseconddiagnosisbasedondynamicvideos,andthesquaresindicatefinaldiagnosisofradiologistwithThyNetassistance.AI=artificialintelligence.AUROC=areaunderthereceiveroperatingcharacteristiccurve.GAGH=theGuangzhouArmyGeneralHospital.GUCM=theFirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine.GXMU=theFirstAffiliatedHospitalofGuangxiMedicalUniversity.ROC=receiveroperatingcharacteristiccurve.SYSU06=theSixthAffiliatedHospitalofSunYat-senUniversity.
AUROC(95%CI)
pvalue
Accuracy(95%CI)
p
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中小企業(yè)人員書面勞動合同
- 綠色低碳產(chǎn)業(yè)項目合作合同
- 砂礫石供貨合同
- 危險廢物運輸合同協(xié)議
- 煤炭銷售合同
- 環(huán)保項目資金籌措及使用協(xié)議
- 新能源汽車充電基礎(chǔ)設(shè)施建設(shè)合作合同
- 2023-2024學年高中信息技術(shù)選修2(浙教版2019)-網(wǎng)絡(luò)基礎(chǔ)-教學設(shè)計-2.2-網(wǎng)絡(luò)體系結(jié)構(gòu)與TCPIP協(xié)議
- 劇組場地使用損壞賠償協(xié)議
- 粵教版高中信息技術(shù)必修教學設(shè)計-2.3 信息的鑒別與評價-
- 學前兒童保育學(學前教育專業(yè))全套教學課件
- 人工智能行業(yè)數(shù)據(jù)安全與隱私保護
- 畜牧養(yǎng)殖設(shè)備(共73張PPT)
- 消防安全每月防火檢查記錄
- GB/T 9439-2023灰鑄鐵件
- (完整word版)Word信紙(A4橫條直接打印版)模板
- 論文寫作與學術(shù)規(guī)范 課程教學大綱
- 向高層銷售:與決策者有效打交道
- DB32/T 4443-2023 罐區(qū)內(nèi)在役危險化學品(常低壓)儲罐管理規(guī)范
- 尼泊爾簡介課件
- 嬰幼兒托育機構(gòu)管理與運營實務(wù)高職PPT完整全套教學課件
評論
0/150
提交評論