版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆寧夏石嘴山三中高三下學期聯(lián)合考試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列的通項公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要2.如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.3.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.4.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個5.設(shè)曲線在點處的切線方程為,則()A.1 B.2 C.3 D.46.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.7.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.8.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.9.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.10.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.11.已知集合,,則集合子集的個數(shù)為()A. B. C. D.12.設(shè)為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.直線過圓的圓心,則的最小值是_____.14.已知數(shù)列的各項均為正數(shù),記為數(shù)列的前項和,若,,則______.15.設(shè)命題:,,則:__________.16.平面向量與的夾角為,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(選修4-4:坐標系與參數(shù)方程)在平面直角坐標系,已知曲線(為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.18.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.19.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數(shù)a的取值范圍;(3)證明:對一切,都有成立.20.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.21.(12分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數(shù),求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結(jié)果)22.(10分)設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則的模為______.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.2、B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題.3、B【解析】
求得雙曲線的一條漸近線方程,設(shè)出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質(zhì)和離心率公式,計算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.4、B【解析】
由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關(guān)鍵,著重考查了推理與運算能力.5、D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查運算求解能力,是基礎(chǔ)題6、A【解析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬于較難題.7、B【解析】
利用復(fù)數(shù)的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復(fù)數(shù)的四則運算,需掌握復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.8、D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設(shè)有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關(guān)的問題,本題屬于基礎(chǔ)題.9、B【解析】
把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復(fù)合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.10、C【解析】
設(shè)線段的中點為,判斷出點的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.11、B【解析】
首先求出,再根據(jù)含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數(shù)為.故選:.【點睛】考查列舉法、描述法的定義,以及交集的運算,集合子集個數(shù)的計算公式,屬于基礎(chǔ)題.12、A【解析】
根據(jù)向量共線的性質(zhì)依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學生的推斷能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標準方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.14、63【解析】
對進行化簡,可得,再根據(jù)等比數(shù)列前項和公式進行求解即可【詳解】由數(shù)列為首項為,公比的等比數(shù)列,所以63【點睛】本題考查等比數(shù)列基本量的求法,當處理復(fù)雜因式時,常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)15、,【解析】
存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.16、【解析】
由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數(shù)量積,進而即可求出結(jié)果,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)曲線:,直線的直角坐標方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標方程化為直角坐標方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達定理得點到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡得:,設(shè)兩點所對應(yīng)的參數(shù)分別為,則,.18、(1);(2)證明見解析【解析】
(1)根據(jù),,成等比數(shù)列,有,結(jié)合公差,,求得通項,再解不等式.(2)根據(jù)(1),用裂項相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當時,單調(diào)遞增,且,當時,單調(diào)遞增,且,所以,由,知不等式成立.【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.19、(1)(2)((3)見證明【解析】
(1)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點,列表分析導(dǎo)函數(shù)符號變化規(guī)律確定函數(shù)單調(diào)性,最后根據(jù)函數(shù)單調(diào)性確定最小值取法;(2)先分離不等式,轉(zhuǎn)化為對應(yīng)函數(shù)最值問題,利用導(dǎo)數(shù)求對應(yīng)函數(shù)最值即得結(jié)果;(3)構(gòu)造兩個函數(shù),再利用兩函數(shù)最值關(guān)系進行證明.【詳解】(1)當時,單調(diào)遞減,當時,單調(diào)遞增,所以函數(shù)f(x)的最小值為f()=;(2)因為所以問題等價于在上恒成立,記則,因為,令函數(shù)f(x)在(0,1)上單調(diào)遞減;函數(shù)f(x)在(1,+)上單調(diào)遞增;即,即實數(shù)a的取值范圍為(.(3)問題等價于證明由(1)知道,令函數(shù)在(0,1)上單調(diào)遞增;函數(shù)在(1,+)上單調(diào)遞減;所以{,因此,因為兩個等號不能同時取得,所以即對一切,都有成立.【點睛】對于求不等式成立時的參數(shù)范圍問題,在可能的情況下把參數(shù)分離出來,使不等式一端是含有參數(shù)的不等式,另一端是一個區(qū)間上具體的函數(shù),這樣就把問題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問題的解決.但要注意分離參數(shù)法不是萬能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.20、(1);(2).【解析】
(1)平面平面,建立坐標系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設(shè)為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.21、(1)(2)詳見解析(3)初中生平均參加公益勞動時間較長【解析】
(1)由圖表直接利用隨機事件的概率公式求解;(2)X的所有可能取值為0,1,2,3.由古典概型概率公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滬教新版高一數(shù)學下冊階段測試試卷含答案
- 2025年人教A版九年級生物上冊階段測試試卷含答案
- 2025年北師大新版七年級科學下冊階段測試試卷
- 2025年度能源設(shè)備維修與節(jié)能減排合同3篇
- 二零二五年度智能設(shè)備研發(fā)與購銷合同范本2篇
- 2025年度能源產(chǎn)業(yè)政策研究與咨詢合同2篇
- 2025年冀教版六年級英語上冊月考試卷含答案
- 2025年冀教版選擇性必修3生物下冊階段測試試卷含答案
- 2024年版權(quán)轉(zhuǎn)讓合同:漫畫作品轉(zhuǎn)讓協(xié)議
- 2025年人教新課標必修2物理下冊階段測試試卷含答案
- 【高一上】【期末話收獲 家校話未來】期末家長會
- 滯銷風險管理制度內(nèi)容
- GB/T 44890-2024行政許可工作規(guī)范
- 二年級下冊加減混合豎式練習360題附答案
- (完整版)四年級上冊數(shù)學豎式計算題100題直接打印版
- 玻璃瓶罐的缺陷產(chǎn)生原因及解決方法63699
- 高層住宅(23-33層)造價估算指標
- “千師訪萬家”家訪記錄表(共2頁)
- 服裝采購招標文件范本
- 《青田石雕》教學設(shè)計
- (精選)有限空間作業(yè)安全監(jiān)理實施細則
評論
0/150
提交評論