2024屆廣東省廣州天河區(qū)七校聯(lián)考中考四模數(shù)學(xué)試題含解析_第1頁
2024屆廣東省廣州天河區(qū)七校聯(lián)考中考四模數(shù)學(xué)試題含解析_第2頁
2024屆廣東省廣州天河區(qū)七校聯(lián)考中考四模數(shù)學(xué)試題含解析_第3頁
2024屆廣東省廣州天河區(qū)七校聯(lián)考中考四模數(shù)學(xué)試題含解析_第4頁
2024屆廣東省廣州天河區(qū)七校聯(lián)考中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆廣東省廣州天河區(qū)七校聯(lián)考中考四模數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學(xué)》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數(shù)根的情況是()A.有三個實數(shù)根 B.有兩個實數(shù)根 C.有一個實數(shù)根 D.無實數(shù)根2.在同一平面直角坐標系中,函數(shù)y=x+k與(k為常數(shù),k≠0)的圖象大致是()A. B.C. D.3.如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.4.化簡的結(jié)果是()A.±4 B.4 C.2 D.±25.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)6.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°7.某車間有27名工人,生產(chǎn)某種由一個螺栓套兩個螺母的產(chǎn)品,每人每天生產(chǎn)螺母16個或螺栓22個,若分配x名工人生產(chǎn)螺栓,其他工人生產(chǎn)螺母,恰好使每天生產(chǎn)的螺栓和螺母配套,則下面所列方程中正確的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)8.據(jù)報道,南寧創(chuàng)客城已于2015年10月開城,占地面積約為14400平方米,目前已引進創(chuàng)業(yè)團隊30多家,將14400用科學(xué)記數(shù)法表示為()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣49.如圖,在中,,分別以點和點為圓心,以大于的長為半徑作弧,兩弧相交于點和點,作直線交于點,交于點,連接.若,則的度數(shù)是()A. B. C. D.10.下列標志中,可以看作是軸對稱圖形的是()A. B. C. D.11.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°12.計算的結(jié)果是()A. B. C. D.1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關(guān)于的分式方程的解為正數(shù),則的取值范圍是___________.14.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.15.如圖,Rt△ABC中,∠C=90°,AB=10,,則AC的長為_______.16.圓柱的底面半徑為1,母線長為2,則它的側(cè)面積為_____.(結(jié)果保留π)17.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結(jié)EF.(1)線段BE與AF的位置關(guān)系是,=.(2)如圖2,當△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).18.化簡:32三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)分式化簡:(a-)÷20.(6分)關(guān)于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.(1)若m是方程的一個實數(shù)根,求m的值;(2)若m為負數(shù),判斷方程根的情況.21.(6分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.22.(8分)直線y1=kx+b與反比例函數(shù)的圖象分別交于點A(m,4)和點B(n,2),與坐標軸分別交于點C和點D.(1)求直線AB的解析式;(2)根據(jù)圖象寫出不等式kx+b﹣≤0的解集;(3)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.23.(8分)如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.24.(10分)為了傳承祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復(fù)疑無路”.(1)小明回答該問題時,僅對第二個字是選“重”還是選“窮”難以抉擇,隨機選擇其中一個,則小明回答正確的概率是;(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.九宮格25.(10分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.26.(12分)某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.請根據(jù)以上信息解答下列問題:課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為______;請補全條形統(tǒng)計圖;該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.27.(12分)如圖,直線y=﹣x+2與反比例函數(shù)(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.求a,b的值及反比例函數(shù)的解析式;若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點情況.因為函數(shù)與函數(shù)的圖象只有一個交點所以方程只有一個實數(shù)根故選C.考點:函數(shù)的圖象點評:函數(shù)的圖象問題是初中數(shù)學(xué)的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.2、B【解析】

選項A中,由一次函數(shù)y=x+k的圖象知k<0,由反比例函數(shù)y=的圖象知k>0,矛盾,所以選項A錯誤;選項B中,由一次函數(shù)y=x+k的圖象知k>0,由反比例函數(shù)y=的圖象知k>0,正確,所以選項B正確;由一次函數(shù)y=x+k的圖象知,函數(shù)圖象從左到右上升,所以選項C、D錯誤.故選B.3、D【解析】

連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識,綜合程度較高,屬于中等題型.4、B【解析】

根據(jù)算術(shù)平方根的意義求解即可.【詳解】4,故選:B.【點睛】本題考查了算術(shù)平方根的意義,一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術(shù)平方根,正數(shù)a有一個正的算術(shù)平方根,0的算術(shù)平方根是0,負數(shù)沒有算術(shù)平方根.5、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應(yīng)用,熟練掌握相關(guān)知識點是解答的關(guān)鍵.6、A【解析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應(yīng)用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關(guān)鍵.7、D【解析】設(shè)分配x名工人生產(chǎn)螺栓,則(27-x)人生產(chǎn)螺母,根據(jù)一個螺栓要配兩個螺母可得方程2×22x=16(27-x),故選D.8、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).【詳解】14400=1.44×1.故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、B【解析】

根據(jù)題意可知DE是AC的垂直平分線,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性質(zhì)即可求出∠CDA的度數(shù).【詳解】解:∵DE是AC的垂直平分線,

∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,

故選B.【點睛】本題考查作圖-基本作圖、線段的垂直平分線的性質(zhì)、等腰三角形的性質(zhì),三角形有關(guān)角的性質(zhì)等知識,解題的關(guān)鍵是熟練運用這些知識解決問題,屬于中考??碱}型.10、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;

B、不是軸對稱圖形,是中心對稱圖形,不符合題意;

C、不是軸對稱圖形,是中心對稱圖形,不符合題意;

D、是軸對稱圖形,符合題意.

故選D.【點睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.11、B【解析】

延長AC交DE于點F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.12、D【解析】

根據(jù)同分母分式的加法法則計算可得結(jié)論.【詳解】===1.故選D.【點睛】本題考查了分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運算法則.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、且.【解析】

方程兩邊同乘以x-1,化為整數(shù)方程,求得x,再列不等式得出m的取值范圍.【詳解】方程兩邊同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解為正數(shù),∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案為m>2且m≠1.14、1【解析】

根據(jù)△ABC中DE垂直平分AC,可求出AE=CE,再根據(jù)等腰三角形的性質(zhì)求出∠ACE=∠A=30°,再根據(jù)∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.15、8【解析】

在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的長.【詳解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案為8.【點睛】此題主要考查銳角三角函數(shù)在直角三形中的應(yīng)用及勾股定理.16、4【解析】

根據(jù)圓柱的側(cè)面積公式,計算即可.【詳解】圓柱的底面半徑為r=1,母線長為l=2,則它的側(cè)面積為S側(cè)=2πrl=2π×1×2=4π.故答案為:4π.【點睛】題考查了圓柱的側(cè)面積公式應(yīng)用問題,是基礎(chǔ)題.17、(1)互相垂直;;(2)結(jié)論仍然成立,證明見解析;(3)135°.【解析】

(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長,進而得出答案;

(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;

(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關(guān)系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點E,F(xiàn)分別是線段BC,AC的中點,

∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,

∴EC=BC,F(xiàn)C=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長BE交AC于點O,交AF于點M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.18、-6【解析】

根據(jù)二次根式的乘法運算法則以及絕對值的性質(zhì)和二次根式的化簡分別化簡整理得出即可:【詳解】32故答案為-6三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、a-b【解析】

利用分式的基本性質(zhì)化簡即可.【詳解】===.【點睛】此題考查了分式的化簡,用到的知識點是分式的基本性質(zhì)、完全平方公式.20、(1);(2)方程有兩個不相等的實根.【解析】分析:(1)由方程根的定義,代入可得到關(guān)于m的方程,則可求得m的值;

(2)計算方程根的判別式,判斷判別式的符號即可.詳解:(1)∵m是方程的一個實數(shù)根,

∴m2-(2m-3)m+m2+1=1,

∴m=?;

(2)△=b2-4ac=-12m+5,

∵m<1,

∴-12m>1.

∴△=-12m+5>1.

∴此方程有兩個不相等的實數(shù)根.點睛:考查根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.21、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設(shè),利用求線段中點的公式列出關(guān)于m的方程組,再利用0<m<1即可求解;(1)連結(jié)BD,過點D作x軸的垂線交BC于點H,由,設(shè)出點D的坐標,進而求出點H的坐標,利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.詳解:(1)∵拋物線過點A(1,0)和B(1,0)(2)∵∴點C為線段DE中點設(shè)點E(a,b)∵0<m<1,∴當m=1時,縱坐標最小值為2當m=1時,最大值為2∴點E縱坐標的范圍為(1)連結(jié)BD,過點D作x軸的垂線交BC于點H∵CE=CD∴H(m,-m+1)∴當m=1.5時,.點睛:本題考查了二次函數(shù)的綜合題、待定系數(shù)法、一次函數(shù)等知識點,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,會用方程的思想解決問題.22、(1)y=﹣x+6;(2)0<x<2或x>4;(3)點P的坐標為(2,0)或(﹣3,0).【解析】

(1)將點坐標代入雙曲線中即可求出,最后將點坐標代入直線解析式中即可得出結(jié)論;(2)根據(jù)點坐標和圖象即可得出結(jié)論;(3)先求出點坐標,進而求出,設(shè)出點P坐標,最后分兩種情況利用相似三角形得出比例式建立方程求解即可得出結(jié)論.【詳解】解:(1)∵點和點在反比例函數(shù)的圖象上,,解得,即把兩點代入中得,解得:,所以直線的解析式為:;(2)由圖象可得,當時,的解集為或.(3)由(1)得直線的解析式為,當時,y=6,,,當時,,∴點坐標為.設(shè)P點坐標為,由題可以,點在點左側(cè),則由可得①當時,,,解得,故點P坐標為②當時,,,解得,即點P的坐標為因此,點P的坐標為或時,與相似.【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,相似三角形的性質(zhì),用方程的思想和分類討論的思想解決問題是解本題的關(guān)鍵.23、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標,得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點C(,-),從而得PB=3-=,PC=;再分情況討論:①當△AOD∽△BPC時,根據(jù)相似三角形性質(zhì)得,

解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點C也在此圓上,則MC=MB,根據(jù)兩點間的距離公式得一個關(guān)于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點A、B(點A在點B的左側(cè)),∴A(a,0),B(3,0),當x=0時,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當x=時,y=-,∴C(,-),∴PB=3-=,PC=,①當△AOD∽△BPC時,∴,即,

解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點M,∵D、B、O三點共圓,且BD為直徑,圓心為M(,a),若點C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當a=時,D、O、C、B四點共圓.【點睛】本題考查了二次函數(shù)、相似三角形的性質(zhì)、四點共圓等,綜合性較強,有一定的難度,正確進行分析,熟練應(yīng)用相關(guān)知識是解題的關(guān)鍵.24、(1);(2)【解析】試題分析:(1)利用概率公式直接計算即可;(2)畫出樹狀圖得到所有可能的結(jié)果,再找到回答正確的數(shù)目即可求出小麗回答正確的概率.試題解析:(1)∵對第二個字是選“重”還是選“窮”難以抉擇,∴若隨機選擇其中一個正確的概率=,故答案為;(2)畫樹形圖得:由樹狀圖可知共有4種可能結(jié)果,其中正確的有1種,所以小麗回答正確的概率=.考點:列表法與樹狀圖法;概率公式.25、(1)y=﹣x2+2x+3;(2)見解析.【解析】

(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設(shè)點Q的坐標為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點B(3,0),點C(0,3),∴拋物線的對稱軸為直線x=1,∴點A的坐標為(﹣1,0),設(shè)點Q的坐標為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當AC為斜邊時,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點Q的坐標為(1,1)或(1,2),當AQ為斜邊時,4+t2=10+t2﹣6t+10,解得,t=,∴點Q的坐標為(1,),當CQ時斜邊時,t2﹣6t+10=4+t2+10,解得,t=,∴點Q的坐標為(1,﹣),由上可得,當點Q的坐標是(1,1)、(1,2)、(1,)或(1,﹣)時,使得以A、C、Q為頂點的三角形為直角三角形.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)的圖像與性質(zhì),勾股定理及分類討論的數(shù)學(xué)思想,熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,分三種情況討論是解(2)的關(guān)鍵.26、(1)144°;(2)補圖見解析;(3)160人;(4)這個說法不正確,理由見解析.【解析】

試題分析:(1)360°×(1﹣15%﹣45%)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論