版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州市尋烏縣2024年八年級下冊數(shù)學期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如果分式有意義,那么的取值范圍是()A. B.C. D.或2.對于反比例函數(shù),下列說法中不正確的是()A.x>0時,y隨x增大而增大B.圖像分布在第二第四象限C.圖像經(jīng)過點(1.-2)D.若點A()B()在圖像上,若,則3.若a>b,則下列不等式成立的是()A. B.a(chǎn)+5<b+5 C.-5a>-5b D.a(chǎn)-2<b-24.如圖,在正方形ABCD中,E是對角線BD上一點,且滿足=AD,連接CE并延長交AD于點F,連接AE,過B點作于點G,延長BG交AD于點H.在下列結(jié)論中:①AH=DF;②∠AEF=45°;③.其中不正確的結(jié)論有()A.1個 B.2個 C.3個 D.0個5.如果關于的分式方程有增根,則增根的值為()A.0 B.-1 C.0或-1 D.不存在6.在同一平面直角坐標系內(nèi),將函數(shù)y=2(x+1)2﹣1的圖象沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度,得到圖象的頂點坐標是()A.(﹣1,1) B.(1,﹣2) C.(2,﹣2) D.(1,﹣1)7.如圖,已知A(2,1),現(xiàn)將A點繞原點O逆時針旋轉(zhuǎn)90°得到A1,則A1的坐標是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)8.如圖,平行四邊形ABCD中,∠A的平分線AE交CD于E,AB=5,BC=3,則EC的長()A.2 B.3 C.4 D.2.59.交警在一個路口統(tǒng)計的某個時段來往車輛的分布如條形圖所示.請找出這些車輛速度的眾數(shù)、中位數(shù)分別是()A.52,53 B.52,52 C.53,52 D.52,5110.為迎接“勞動周”的到來,某校將九(1)班50名學生本周的課后勞動時間比上周都延長了10分鐘,則該班學生本周勞動時間的下列數(shù)據(jù)與上周比較不發(fā)生變化的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差二、填空題(每小題3分,共24分)11.已知不等式組的解集為,則的值是________.12.如圖,在矩形ABCD中,∠ABC的平分線交AD與點E,AB=2,BC=3,則CE=_____.13.已知一次函數(shù)的圖象如圖,根據(jù)圖中息請寫出不等式的解集為__________.14.將2019個邊長為2的正方形,按照如圖所示方式擺放,O1,O2,O3,O4,O5,…是正方形對角線的交點,那么陰影部分面積之和等于_____.15.若分式方程無解,則__________.16.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機摸出一個球,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發(fā)現(xiàn)有60次摸到黑球,請你估計這個袋中紅球約有_____個.17.已知點M(m,3)在直線上,則m=______.18.的平方根是____.三、解答題(共66分)19.(10分)如圖,直線與x軸、y軸分別交于點A和點B,點C在線段AB上,點D在y軸的負半軸上,C、D兩點到x軸的距離均為1.(1)點C的坐標為,點D的坐標為;(1)點P為線段OA上的一動點,當PC+PD最小時,求點P的坐標.20.(6分)小聰與小明在一張矩形臺球桌ABCD邊打臺球,該球桌長AB=4m,寬AD=2m,點O、E分別為AB、CD的中點,以AB、OE所在的直線建立平面直角坐標系。(1)如圖1,M為BC上一點;①小明要將一球從點M擊出射向邊AB,經(jīng)反彈落入D袋,請你畫出AB上的反彈點F的位置;②若將一球從點M(2,12)擊出射向邊AB上點F(0.5,0),問該球反彈后能否撞到位于(-0.5,0.8)位置的另一球?請說明理由(2)如圖2,在球桌上放置兩個擋板(厚度不計)擋板MQ的端點M在AD中點上且MQ⊥AD,MQ=2m,擋板EH的端點H在邊BC上滑動,且擋板EH經(jīng)過DC的中點E;①小聰把球從B點擊出,后經(jīng)擋板EH反彈后落入D袋,當H是BC中點時,試證明:DN=BN;②如圖3,小明把球從B點擊出,依次經(jīng)擋板EH和擋板MQ反彈一次后落入D袋,已知∠EHC=75°,請你直接寫出球的運動路徑BN+NP+PD的長。21.(6分)某中學對全校1200名學生進行“校園安全知識”的教育活動,從1200名學生中隨機抽取部分學生進行測試,成績評定按從高分到低分排列分為四個等級,繪制了圖①、圖②兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:(1)求本次抽查的學生共有______人;(2)將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;(3)扇形統(tǒng)計圖中“”所在扇形圓心角的度數(shù)為______;(4)估計全?!啊钡燃壍膶W生有______人22.(8分)為了倡導節(jié)約能源,自某日起,我國對居民用電采用階梯電價,為了使大多數(shù)家庭不增加電費支出,事前就需要了解居民全年月平均用電量的分布情況,制訂一個合理的方案.某調(diào)查人員隨機調(diào)查了市戶居民全年月平均用電量(單位:千瓦時)數(shù)據(jù)如下:得到如下頻數(shù)分布表:全年月平均用電量/千時頻數(shù)頻率合計畫出頻數(shù)分布直方圖,如下:(1)補全數(shù)分布表和率分布直方圖(2)若是根據(jù)數(shù)分布表制成扇形統(tǒng)計圖,則不低于千瓦時的部分圓心角的度數(shù)為_____________;(3)若市的階梯電價方案如表所示,你認為這個階梯電價方案合理嗎?檔次全年月平均用電量/千瓦時電價(元/千瓦時)第一檔第二檔第三檔大于23.(8分)如圖,一次函數(shù)的圖象與,軸分別交于,兩點,點與點關于軸對稱.動點,分別在線段,上(點與點,不重合),且滿足.(1)求點,的坐標及線段的長度;(2)當點在什么位置時,,說明理由;(3)當為等腰三角形時,求點的坐標.24.(8分)如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.(1)求k、b的值;(2)請直接寫出不等式kx+b﹣3x>0的解集.(3)若點D在y軸上,且滿足S△BCD=2S△BOC,求點D的坐標.25.(10分)為創(chuàng)建足球特色學校,營造足球文化氛圍,某學校隨機抽取部分八年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分—10分,B級:7分—7.9分,C級:6分—6.9分,D級:1分—5.9分)根據(jù)所給信息,解答以下問題:(1)樣本容量為,C對應的扇形的圓心角是____度,補全條形統(tǒng)計圖;(2)所抽取學生的足球運球測試成績的中位數(shù)會落在____等級;(3)該校八年級有300名學生,請估計足球運球測試成績達到級的學生有多少人?26.(10分)如圖,菱形ABCD中,AB=6cm,∠ADC=60°,點E從點D出發(fā),以1cm/s的速度沿射線DA運動,同時點F從點A出發(fā),以1cm/s的速度沿射線AB運動,連接CE、CF和EF,設運動時間為t(s).(1)當t=3s時,連接AC與EF交于點G,如圖①所示,則AG=cm;(2)當E、F分別在線段AD和AB上時,如圖②所示,求證△CEF是等邊三角形;(3)當E、F分別運動到DA和AB的延長線上時,如圖③所示,若CE=cm,求t的值和點F到BC的距離.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】
分式有意義,則分式的分母不為0,可得關于x的不等式,解不等式即得答案.【詳解】解:要使分式有意義,則x+1≠0,解得,故選C.【點睛】本題考查了分式有意義的條件,屬于基礎題型,分式的分母不為0是分式有意義的前提條件.2、D【解析】
根據(jù)反比例函數(shù)圖象上點的坐標特征及反比例函數(shù)的性質(zhì),即函數(shù)所在的象限和增減性對各選項作出判斷.【詳解】A.把點(1,-2)代入得:-2=-2,故該選項正確,不符合題意,B.∵k=-2<0,∴函數(shù)圖像分布在第二第四象限,故該選項正確,不符合題意,C.∵k=-2<0,∴x>0時,y隨x增大而增大,故該選項正確,不符合題意,D.∵反比例函數(shù)的圖象在二、四象限,∴x<0時,y>0,x>0時,y<0,∴x1<0<x2時,y1>y2,故該選項錯誤,符合題意,故選D.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征及反比例函數(shù)的性質(zhì),對于反比例函數(shù),當k>0時,圖象在一、三象限,在各象限內(nèi),y隨x的增大而減?。划攌<0時,圖象在二、四象限,在各象限內(nèi),y隨x的增大而增大;熟練掌握反比例函數(shù)的性質(zhì)是解題關鍵.3、A【解析】
根據(jù)不等式的性質(zhì)逐項分析即可.【詳解】不等式的兩邊同時除以一個正數(shù),不等號的方向不變,故A正確.不等式的兩邊同時加上或減去一個數(shù),不等號的方向不變,故B、D錯誤;不等式的兩邊同時乘以一個負數(shù),不等號的方向改變,故C錯誤.故選A.【點睛】本題考查了不等式的性質(zhì):①把不等式的兩邊都加(或減去)同一個整式,不等號的方向不變;②不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;③不等式兩邊都乘(或除以)同一個負數(shù),不等號的方向改變.4、A【解析】
先判斷出∠DAE=∠ABH,再判斷△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判斷出Rt△ABH≌Rt△DCF從而得到①正確,根據(jù)三角形的外角求出∠AEF=45°,得出②正確;連接HE,判斷出S△EFH≠S△EFD得出③錯誤.【詳解】∵BD是正方形ABCD的對角線,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是線段AE的垂直平分線,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正確;如圖,連接HE,∵BH是AE垂直平分線,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四邊形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③錯誤,∴正確的是①②,故選A.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),三角形的內(nèi)角和和三角形外角的性質(zhì),解本題的關鍵是判斷出△ADE≌△CDE,難點是作出輔助線.5、A【解析】
先把分式方程化成整式方程,再解整式方程求出x的值,根據(jù)方程有增根得出或,解出k的值即可得出答案.【詳解】又方程有增根∴或無解或k=0∴k=0∴增根的值為0故答案選擇A.【點睛】本題考查的是分式方程的增根問題,屬于基礎題型,解題關鍵是根據(jù)增根得出整式方程有解,而分式方程無解,即整式方程求出的解使得分式方程的分母等于0.6、B【解析】
先求出原函數(shù)的頂點坐標,再按照要求移動即可.【詳解】解:函數(shù)y=2(x+1)2﹣1的頂點坐標為(﹣1,﹣1),點(﹣1,﹣1)沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度后對應點的坐標為(1,﹣2),即平移后拋物線的頂點坐標是(1,﹣2).故選:B.【點睛】本題考查函數(shù)的相關圖像性質(zhì),能夠求出頂點坐標是解題關鍵.7、A【解析】
根據(jù)點(x,y)繞原點逆時針旋轉(zhuǎn)90°得到的坐標為(-y,x)解答即可.【詳解】已知A(2,1),現(xiàn)將A點繞原點O逆時針旋轉(zhuǎn)90°得到A1,所以A1的坐標為(﹣1,2).故選A.【點睛】本題考查的是旋轉(zhuǎn)的性質(zhì),熟練掌握坐標的旋轉(zhuǎn)是解題的關鍵.8、A【解析】
根據(jù)平行四邊形的性質(zhì)可得AB=CD=5,AD=BC=3,AB∥CD,然后根據(jù)平行線的性質(zhì)可得∠EAB=∠AED,然后根據(jù)角平分線的定義可得∠EAB=∠EAD,從而得出∠EAD=∠AED,根據(jù)等角對等邊可得DA=DE=3,即可求出EC的長.【詳解】解:∵四邊形ABCD是平行四邊形,AB=5,BC=3,∴AB=CD=5,AD=BC=3,AB∥CD∴∠EAB=∠AED∵AE平分∠DAB∴∠EAB=∠EAD∴∠EAD=∠AED∴DA=DE=3∴EC=CD-DE=2故選A.【點睛】此題考查的是平行四邊形的性質(zhì)、平行線的性質(zhì)、角平分線的定義和等腰三角形的判定,掌握平行四邊形的性質(zhì)、平行線的性質(zhì)、角平分線的定義和等角對等邊是解決此題的關鍵.9、B【解析】
根據(jù)眾數(shù)、中位數(shù)的意義,分別求出眾數(shù)、中位數(shù),再做出選擇即可.【詳解】車速出現(xiàn)次數(shù)最多的是52千米/時,因此車速的眾數(shù)是52,一共調(diào)查27輛車,將車速從小到大排列后,處在中間的一個數(shù)是52,因此中位數(shù)是52,故選:B.【點睛】本題考查中位數(shù)、眾數(shù)的意義和計算方法,掌握中位數(shù)、眾數(shù)的計算方法是得出答案的前提.10、D【解析】【分析】根據(jù)平均數(shù),中位數(shù),眾數(shù),方差的定義或計算公式可以分析出結(jié)果.【詳解】由已知可得,平均數(shù)增加了;中位數(shù)也增加了;眾數(shù)也增加了;方差不變.故選:D【點睛】本題考核知識點:數(shù)據(jù)的代表.解題關鍵點:理解相關定義.二、填空題(每小題3分,共24分)11、【解析】
根據(jù)不等式的解集求出a,b的值,即可求解.【詳解】解得∵解集為∴=1,3+2b=-1,解得a=1,b=-2,∴=2×(-3)=-6【點睛】此題主要考查不等式的解集,解題的關鍵是熟知不等式的性質(zhì)及解集的定義.12、【解析】
根據(jù)矩形的性質(zhì)可得∠AEB=∠EBC,由BE是∠ABC的角平分線可得∠ABE=∠EBC,即可證明∠ABE=∠AEB,進而可得AE=AB,即可求出DE的長,利用勾股定理即可求出CE的長.【詳解】∵ABCD是矩形,∴AD//BC,CD=AB=2,AD=BC=3,∴∠AEB=∠EBC,∵BE是∠ABC的角平分線,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AE=AB=2,∴DE=AD-AE=1,在Rt△CDE中,CE==,故答案為:【點睛】本題考查矩形的性質(zhì)、勾股定理及等腰三角形的判定和性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.13、x≤1【解析】
觀察函數(shù)圖形得到當x≤1時,一次函數(shù)y=ax+b的函數(shù)值小于2,即ax+b≤2【詳解】解:根據(jù)題意得當x≤1時,ax+b≤2,
即不等式ax+b≤2的解集為:x≤1.
故答案為:x≤1.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)1的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合.14、2【解析】
根據(jù)題意可得:陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則2019個這樣的正方形重疊部分即為(2019﹣1)個陰影部分的和,問題得解.【詳解】由題意可得陰影部分面積等于正方形面積的,則一個陰影部分面積為:1.n個這樣的正方形重疊部分(陰影部分)的面積和為×(n﹣1)×4=(n﹣1).所以這個2019個正方形重疊部分的面積和=×(2019﹣1)×4=2,故答案為:2.【點睛】本題考查了正方形的性質(zhì),解決本題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.15、1【解析】
先把m看作已知,解分式方程得出x與m的關系,再根據(jù)分式方程無解可確定方程的增根,進一步即可求出m的值.【詳解】解:在方程的兩邊同時乘以x-1,得,解得.因為原方程無解,所以原分式方程有增根x=1,即,解得m=1.故答案為1.【點睛】本題考查了分式方程的解法和分式方程的增根,正確理解分式方程無解與其增根的關系是解題的關鍵.16、1【解析】
估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據(jù)概率公式計算這個口袋中黑球的數(shù)量,繼而得出答案.【詳解】因為共摸了200次球,發(fā)現(xiàn)有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數(shù)量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.17、2【解析】
把點M代入即可求解.【詳解】把點M代入,即3=2m-1,解得m=2,故填:2.【點睛】此題主要考查一次函數(shù),解題的關鍵是熟知坐標與函數(shù)的關系.18、±3【解析】
∵=9,∴9的平方根是.故答案為3.三、解答題(共66分)19、(1)(-3,1);(0,-1)(1)P(,0)【解析】
(1)根據(jù)直線與C、D兩點到x軸的距離均為1即可求出C,D的坐標;(1)連接CD,求出直線CD與x軸的交點即為P點.【詳解】(1)令y=1,解得x=-3,∴點C的坐標為(-3,1)令y=-1,解得x=0,∴點D的坐標為(0,-1)(1)如圖,連接CD,求出直線CD與x軸的交點即為P點.設直線CD的解析式為y=kx+b,把(-3,1),(0,1)代入得解得∴y=x-1令y=0,解得x=∴P(,0)【點睛】此題主要考查一次函數(shù)的圖像與性質(zhì),解題的關鍵是熟知待定系數(shù)法確定函數(shù)關系式.20、(1)①答案見解析②答案見解析(2)①證明見解析②2【解析】
(1)①根據(jù)反射的性質(zhì)畫出圖形,可確定出點F的位置;②過點H作HG⊥AB于點G,利用點H的坐標,可知HG的長,利用矩形的性質(zhì)結(jié)合已知可求出點B,C的坐標,求出BM,BF的長,再利用銳角三角函數(shù)的定義,去證明tan∠MFB=tan∠HFG,即可證得∠MFB=∠HFG,即可作出判斷;(2)①連接BD,過點N作NT⊥EH于點N,交AB于點T,利用三角形中位線定理可證得EH∥BD,再證明MQ∥AB,從而可證得∠DNQ=∠BNQ,∠DQN=∠NQB,利用ASA證明△DNQ≌△BNQ,然后利用全等三角形的性質(zhì),可證得結(jié)論;②作點B關于EH對稱點B',過點B'作B'G⊥BC交BC的延長線于點G,連接B'H,B'N,連接AP,過點B'作B'L⊥x軸于點L,利用軸對稱的性質(zhì),可證得AP=DP,NB'=NB,∠BHN=∠NHB'根據(jù)反射的性質(zhì),易證AP,NQ,NC在一條直線上,從而可證得BN+NP+PD=AB',再利用鄰補角的定義,可求出∠B'HG=30°,作EK=KH,利用等腰三角形的性質(zhì),及三角形外角的性質(zhì),求出∠CKH的度數(shù),利用解直角三角形表示出KH,CK的長,由BC=2,建立關于x的方程,解方程求出x的值,從而可得到CH,B'H的長,利用解直角三角形求出GH,BH的長,可得到點B'的坐標,再求出AL,B'L的長,然后在Rt△AB'L中,利用勾股定理就可求出AB'的長.【詳解】(1)解:①如圖1,②答:反彈后能撞到位于(-0.5,0.8)位置的另一球理由:如圖,設點H(-0.5,0.8),過點H作HG⊥AB于點G,∴HG=0.8∵矩形ABCD,點O,E分別為AB,CD的中點,AD=2,AB=4,∴OB=OA=2,BC=AD=OE=2∴點B(2,0),點C(2,2),∵點M(2,1.2),點F(0.5,0),∴BF=2-0.5=1.5,BM=1.2,F(xiàn)G=0.5-(-0.5)=1在Rt△BMF中,tan∠MFB=BMBF=在Rt△FGH中,tan∠HFG=HGFG=∴∠MFB=∠HFG,∴反彈后能撞到位于(-0.5,0.8)位置的另一球.(2)解:①連接BD,過點N作NT⊥EH于點N,交AB于點T,∴∠TNE=∠TNH=90°,∵小聰把球從B點擊出,后經(jīng)擋板EH反彈后落入D袋,∴∠BNH=∠DNE,∴∠DNQ=∠BNQ;∵點M是AD的中點,MQ⊥EO,∴MQ∥AB,∴點Q是BD的中點,∴NT經(jīng)過點Q;∵點E,H分別是DC,BC的中點,∴EH是△BCD的中位線,∴EH∥BD∵NT⊥EH∴NT⊥BD;∴∠DQN=∠NQB=90°在△DNQ和△BNQ中,∠DQN=∠NQB∴△DNQ≌△BNQ(ASA)∴DN=BN②作點B關于EH對稱點B',過點B'作B'G⊥BC交BC的延長線于點G,連接B'H,B'N,連接AP,過點B'作B'L⊥x軸于點L,∴AP=DP,NB'=NB,∠BHN=∠NHB'由反射的性質(zhì),可知AP,NQ,NC在一條直線上,∴BN+NP+PD=NB'+NP+AP=AB';∵∠EHC=75°,∠EHC+∠BHN=180°,
∴∠BHN=180°-75°=105°,∴∠NHB'=∠EHC+∠B'HG=105°∴∠B'HG=30°;如圖,作EK=KH,在Rt△ECH中,∠EHC=75°,∴∠E=90°-75°=15°,∴∠E=∠KHE=15°∴∠CKH=∠E+∠KHE=15°+15°=30°,∵設CH=x,則KH=2x,CK=3∴2x+解之:x=4-23,∴CH=4-2∴BH=B'H=BC-CH=2-(4-23)=2在Rt△B'GH中,B'G=12GH=B'Hcos∠B'HG=(23-2)×BG=BH+GH=3-∴點B'的橫坐標為:3-1+2=3∴點B'(3∴AL=2+3+1=3+B'L=3在Rt△AB'L中,AB'=A∴球的運動路徑BN+NP+PD的長為23【點睛】本題考查反射的性質(zhì),解直角三角形,矩形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理等知識點:(1)①根據(jù)反射的性質(zhì)作圖,②根據(jù)等角的三角函數(shù)值相等證明∠MFB=∠HFG來說明反彈后能撞到另一球;(2)①利用ASA證明△DNQ≌△BNQ,然后利用全等三角形的性質(zhì)可得結(jié)論,②作出輔助線,根據(jù)反射的性質(zhì)和軸對稱的性質(zhì)證明BN+NP+PD=AB',然后構(gòu)建方程,解直角三角形并結(jié)合勾股定理求出AB'的長;其中能夠根據(jù)反射的性質(zhì)作出圖形,利用方程思想及數(shù)形結(jié)合思想結(jié)合直角三角形的特殊角進行求解是解題的關鍵.21、(1)60;(2)見解析;(3);(4)1.【解析】
(1)由A組人數(shù)除以其所占百分比可得總抽查人數(shù);(2)用B的人數(shù)除以總抽查人數(shù)可得其百分比,求得D所占百分比再乘以總抽查人數(shù)即為D的人數(shù);(3)用360°乘以A所占百分比即可;(4)利用樣本估計總體思想求解可得.【詳解】解:(1)本次抽查的學生人數(shù)為:(人)(2)B所占百分比為,D所占百分比為,抽查學生中D等級的學生人數(shù)為(人),補全條形統(tǒng)計圖如下所示:(3)“”所在扇形圓心角的度數(shù)為(4)全校“”等級的學生有(人)【點睛】本題考查了扇形統(tǒng)計圖、條形統(tǒng)計圖,觀察統(tǒng)計圖獲得有效信息是解題關鍵,扇形統(tǒng)計圖直接反映部分占總體的百分比大小,條形統(tǒng)計圖直接反映部分的具體數(shù)據(jù).22、(1)詳見解析;(2)144°;(3)合理,理由詳見解析.【解析】
(1)統(tǒng)計出各組的頻數(shù),即可補全頻數(shù)分布表,根據(jù)頻數(shù)分布表中頻率,可以補全頻率分布直方圖,
(2)用360°乘以不等于160千瓦時的部分所占的百分比即可,
(3)通過覆蓋的程度,以及第一檔所占的百分比,確定合理性.【詳解】(1)全年月平均用電量/千時頻數(shù)頻率合計(2)360°×(24%+10%+6%)=144°(3)合理;從統(tǒng)計圖表中看出,全年月平均用電量小于千萬時的有戶,占,即第一檔全年月平均用電量覆蓋了大多數(shù)居民家庭,所以說是合理的.【點睛】考查頻率分布直方圖、頻率分布表、以及扇形統(tǒng)計圖的制作方法,理清圖表之間的關系,是解決問題的關鍵.23、(1)10;(2)當點的坐標是時,;(3)點的坐標是或.【解析】
(1)利用一次函數(shù)圖象上點的坐標特征可求出點,的坐標,結(jié)合點與點關于軸對稱可得出點的坐標,進而可得出線段的長度;(2)當點的坐標是時,,由點,的坐標可得出的長度,由勾股定理可求出的長度,進而可得出,通過角的計算及對稱的性質(zhì)可得出,,結(jié)合可證出,由此可得出:當點的坐標是時,;(3)分,及三種情況考慮:①當時,由(2)的結(jié)論結(jié)合全等三角形的性質(zhì)可得出當點的坐標是時;②當時,利用等腰三角形的性質(zhì)結(jié)合可得出,利用三角形外角的性質(zhì)可得出,進而可得出此種情況不存在;③當時,利用等腰三角形的性質(zhì)結(jié)合可得出,設此時的坐標是,在中利用勾股定理可得出關于的一元一次方程,解之即可得出結(jié)論.綜上,此題得解.【詳解】解:(1)當時,,點的坐標為;當時,,解得:,點的坐標為;點與點關于軸對稱,點的坐標為,.(2)當點的坐標是時,,理由如下:點的坐標為,點的坐標為,,.,,,.和關于軸對稱,.在和中,.當點的坐標是時,.(3)分為三種情況:①當時,如圖1所示,由(2)知,當點的坐標是時,,此時點的坐標是;②當時,則,,.而根據(jù)三角形的外角性質(zhì)得:,此種情況不存在;③當時,則,,如圖2所示.設此時的坐標是,在中,由勾股定理得:,,解得:,此時的坐標是.綜上所述:當為等腰三角形時,點的坐標是或.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、兩點間的距離、勾股定理、對稱的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關鍵是:(1)利用一次函數(shù)圖象上點的坐標特征及對稱的性質(zhì),找出點,,的坐標;(2)利用全等三角形的判定定理找出當點的坐標是時;(3)分,及三種情況求出點的坐標.24、(1)k=-1,b=4;(2)x<1;(3)點D的坐標為D(0,﹣4)或D(0,12).【解析】
(1)用待定系數(shù)法求解;(2)kx+b>3x,結(jié)合圖象求解;(3)先求點B的坐標為(4,0).設點D的坐標為(0,m),直線DB:y=-,過點C作CE∥y軸,交BD于點E,則E(1,),可得CE,S△BCD=S△CED+S△CEB==|3﹣|×4=2|3﹣,由S△BCD=2S△BOC可求解.【詳解】解:(1)當x=1時,y=3x=3,∴點C的坐標為(1,3).將A(﹣2,6)、C(1,3)代入y=kx+b,得:解得:;(2)由kx+b﹣3x>0,得kx+b>3x,∵點C的橫坐標為1,∴x<1;(3)由(1)直線AB:y=﹣x+4當y=0時,有﹣x+4=0,解得:x=4,∴點B的坐標為(4,0).設點D的坐標為(0,m),∴直線DB:y=-,過點C作CE∥y軸,交BD于點E,則E(1,),∴CE=|3﹣|∴S△BCD=S△CED+S△CEB==|3﹣|×4=2|3﹣|.∵S△BCD=2S△BOC,即2|3﹣|=×4×3×2,解得:m=﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45138-2024干擾素抗病毒活性評價技術規(guī)范
- 感恩節(jié)的精彩發(fā)言稿
- 保護知識產(chǎn)權我們在行動
- 踝關節(jié)鏡下后側(cè)入路切除跟距骨橋與(足母)長屈肌腱減壓松解術治療跟距骨橋的臨床研究
- 初級會計經(jīng)濟法基礎-初級會計《經(jīng)濟法基礎》??荚嚲?14
- 溫度差下一維兩分量玻色氣體的輸運性質(zhì)
- 二零二五版消防通道擴建整改工程合同
- 二零二五年度汽車銷售委托代理合同規(guī)范文本3篇
- 二零二五年度綠色能源汽車抵押借款合同2篇
- 知識產(chǎn)權管理制度介紹培訓
- 新疆烏魯木齊地區(qū)2025年高三年級第一次質(zhì)量監(jiān)測生物學試卷(含答案)
- 衛(wèi)生服務個人基本信息表
- 苗圃建設項目施工組織設計范本
- 廣東省湛江市廉江市2023-2024學年八年級上學期期末考試數(shù)學試卷(含答案)
- 學校食品安全舉報投訴處理制度
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 生物 含解析
- 交叉口同向可變車道動態(tài)控制與信號配時優(yōu)化研究
- 安華農(nóng)業(yè)保險股份有限公司北京市地方財政生豬價格指數(shù)保險條款(風險敏感型)
- 技術交易系統(tǒng)的新概念
- 通用電子嘉賓禮薄
- (完整word版)英語四級單詞大全
評論
0/150
提交評論